Suppr超能文献

基于奇异值分解(SVD)的高效能 GNSS 信号获取。

Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).

机构信息

School of Aeronautics and Space Engineering-Technical University of Madrid (UPM), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain.

出版信息

Sensors (Basel). 2018 May 16;18(5):1586. doi: 10.3390/s18051586.

Abstract

A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.

摘要

全球导航卫星系统 (GNSS) 信号处理中的一个重大挑战是需要非常高的采样率。最近出现的压缩感知 (CS) 理论使得如果信号在某个空间中具有稀疏表示,则可以以低采样率处理 GNSS 信号。基于 CS 和 SVD 理论,本文提出了一种在远低于奈奎斯特率的速率下对 GNSS 信号进行采样并重建压缩信号的算法,该算法在经过标准快速傅里叶变换 (FFT) 并行频域搜索获取后仍能进行信号检测,从而得到验证。CS 的最重要前提是 GNSS 信号的稀疏表示,通过构建传输信号的矩形 Toeplitz 矩阵 (TZ),使用 SVD 从 TZ 中计算左奇异向量,以实现稀疏信号表示。接下来,根据 SVD 的左奇异向量获得基于 M 维观测向量,这相当于标准压缩感知理论中的采样器算子,可以在奈奎斯特率以下对信号进行采样,并且仍然可以通过凸优化的 ℓ 1 最小化以精度进行重建。作为附加价值,通过将信号投影到信号功率的最优分布——最显著的本征正交模态 (POD) 中,保留有用信号并滤除噪声,从而增强 GNSS 信号的获取效果。该算法通过实际记录的信号进行了验证,结果表明,该方法对于在时间离散域中对中频 (IF) GNSS 信号进行采样和重建是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa6c/5982536/d645e5b8967f/sensors-18-01586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验