Suppr超能文献

船舶电网谐波检测的压缩感知方法

Compressive Sensing Approach to Harmonics Detection in the Ship Electrical Network.

作者信息

Palczynska Beata, Masnicki Romuald, Mindykowski Janusz

机构信息

Faculty of Electrical and Control Engineering, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland.

Department of Marine Electrical Power Engineering, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland.

出版信息

Sensors (Basel). 2020 May 11;20(9):2744. doi: 10.3390/s20092744.

Abstract

The contribution of this paper is to show the opportunities for using the compressive sensing (CS) technique for detecting harmonics in a frequency sparse signal. The signal in a ship's electrical network, polluted by harmonic distortions, can be modeled as a superposition of a small number of sinusoids and the discrete Fourier transform (DFT) basis forms its sparse domain. According to the theory of CS, a signal may be reconstructed from under-sampled incoherent linear measurements. This paper highlights the use of the discrete Radon transform (DRT) techniques in the CS scheme. In the reconstruction algorithm section, a fast algorithm based on the inverse DRT is presented, in which a few randomly sampled projections of the input signal are used to correctly reconstruct the original signal. However, DRT requires a very large set of measurements that can defeat the purpose of compressive data acquisition. To acquire the wideband data below the Nyquist frequency, the K-rank-order filter is applied in the sparse transform domain to extract the most significant components and accelerate the convergence of the solution. While most CS research efforts focus on random Gaussian measurements, the Bernoulli matrix with different values of the probability of ones is applied in the presented algorithm. Preliminary results of numerical simulation confirm the effectiveness of the algorithm used, but also indicate its limitations. A significant advantage of the proposed approach is the speed of analysis, which uses fast Fourier transform (FFT) and inverse FFT (IFFT) algorithms widely available in programming environments. Moreover, the data processing algorithm is quite simple, and therefore memory usage and burden of the data processing load are relatively low.

摘要

本文的贡献在于展示了使用压缩感知(CS)技术检测频率稀疏信号中谐波的机会。船舶电网中受谐波失真污染的信号可建模为少量正弦波的叠加,离散傅里叶变换(DFT)基构成其稀疏域。根据CS理论,信号可以从不完全采样的非相干线性测量中重建。本文重点介绍了离散拉东变换(DRT)技术在CS方案中的应用。在重建算法部分,提出了一种基于逆DRT的快速算法,其中使用输入信号的一些随机采样投影来正确重建原始信号。然而,DRT需要非常大量的测量,这可能会违背压缩数据采集的目的。为了获取低于奈奎斯特频率的宽带数据,在稀疏变换域中应用K秩排序滤波器来提取最重要的分量并加速解的收敛。虽然大多数CS研究工作集中在随机高斯测量上,但在所提出的算法中应用了具有不同“1”概率值的伯努利矩阵。数值模拟的初步结果证实了所用算法的有效性,但也指出了其局限性。所提方法的一个显著优点是分析速度快,它使用了编程环境中广泛可用的快速傅里叶变换(FFT)和逆快速傅里叶变换(IFFT)算法。此外,数据处理算法相当简单,因此内存使用和数据处理负载的负担相对较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a72/7248871/44cdd5487800/sensors-20-02744-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验