Suppr超能文献

VSITA,一种改进的病毒病原体鉴定中的靶标扩增方法。

VSITA, an Improved Approach of Target Amplification in the Identification of Viral Pathogens.

机构信息

Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100730, China.

出版信息

Biomed Environ Sci. 2018 Apr;31(4):272-279. doi: 10.3967/bes2018.035.

Abstract

OBJECTIVE

Unbiased next generation sequencing (NGS) is susceptible to interference from host or environmental sequences. Consequently, background depletion and virome enrichment techniques are usually needed for clinical samples where viral load is much lower than background sequences.

METHODS

A viral Sequence Independent Targeted Amplification (VSITA) approach using a set of non-ribosomal and virus-enriched octamers (V8) was developed and compared with traditionally used random hexamers (N6). Forty-five archived clinical samples of different types were used in parallel to compare the V8 and N6 enrichment performance of viral sequences and removal performance of ribosomal sequences in the step of reverse transcription followed by quantitative PCR (qPCR). Ten sera samples from patients with fever of unknown origin and 10 feces samples from patients with diarrhea of unknown origin were used in comparison of V8 and N6 enrichment performance following NGS analysis.

RESULTS

A minimum 30 hexamers matching to viral reference sequences (sense and antisense) were selected from a dataset of random 4,096 (46) hexamers (N6). Two random nucleotides were added to the 5' end of the selected hexamers, and 480 (30 × 42) octamers (V8) were obtained. In general, VSITA approach showed higher enrichment of virus-targeted cDNA and enhanced ability to remove unwanted ribosomal sequences in the majorities of 45 predefined clinical samples. Moreover, VSITA combined with NGS enabled to detect not only more viruses but also achieve more viral reads hit and higher viral genome coverage in 20 clinical samples with diarrhea or fever of unknown origin.

CONCLUSION

The VSITA approach designed in this study is demonstrated to possess higher sensitivity and broader genome coverage than traditionally used random hexamers in the NGS-based identification of viral pathogens directly from clinical samples.

摘要

目的

无偏下一代测序(NGS)易受宿主或环境序列的干扰。因此,对于病毒载量远低于背景序列的临床样本,通常需要进行背景耗竭和病毒富集技术。

方法

开发了一种使用非核糖体和富含病毒的八聚体(V8)的病毒序列独立靶向扩增(VSITA)方法,并与传统使用的随机六聚体(N6)进行了比较。同时使用 45 个不同类型的存档临床样本,比较 V8 和 N6 对病毒序列的富集性能,以及在逆转录后定量 PCR(qPCR)步骤中去除核糖体序列的性能。将 10 份发热原因不明的血清样本和 10 份腹泻原因不明的粪便样本用于比较 NGS 分析后 V8 和 N6 的富集性能。

结果

从随机 4096 个(46)六聚体(N6)数据集中选择了至少 30 个与病毒参考序列(有义和反义)匹配的六聚体。在选定的六聚体 5'端添加了两个随机核苷酸,得到 480 个(30×42)八聚体(V8)。一般来说,VSITA 方法在大多数 45 个预定义的临床样本中,显示出更高的病毒靶向 cDNA 富集能力,并且能够更好地去除不需要的核糖体序列。此外,VSITA 与 NGS 相结合,不仅能够在腹泻或发热原因不明的 20 个临床样本中检测到更多的病毒,而且还能够实现更多的病毒读段命中和更高的病毒基因组覆盖率。

结论

本研究设计的 VSITA 方法在直接从临床样本中基于 NGS 的病毒病原体鉴定中,与传统使用的随机六聚体相比,具有更高的灵敏度和更广泛的基因组覆盖范围。

相似文献

1
VSITA, an Improved Approach of Target Amplification in the Identification of Viral Pathogens.
Biomed Environ Sci. 2018 Apr;31(4):272-279. doi: 10.3967/bes2018.035.
2
The use of next generation sequencing in the diagnosis and typing of respiratory infections.
J Clin Virol. 2015 Aug;69:96-100. doi: 10.1016/j.jcv.2015.06.082. Epub 2015 Jun 18.
5
Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.
PLoS Negl Trop Dis. 2017 Nov 20;11(11):e0006075. doi: 10.1371/journal.pntd.0006075. eCollection 2017 Nov.
6
Use of a new RNA next generation sequencing approach for the specific detection of virus infection in cells.
Biologicals. 2019 May;59:29-36. doi: 10.1016/j.biologicals.2019.03.008. Epub 2019 Apr 13.
7
Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance.
Nat Microbiol. 2020 Mar;5(3):443-454. doi: 10.1038/s41564-019-0637-9. Epub 2020 Jan 13.
8
Comparing Viral Metagenomic Extraction Methods.
Curr Issues Mol Biol. 2017;24:59-70. doi: 10.21775/cimb.024.059. Epub 2017 Jul 6.

引用本文的文献

1
From Panels to Pathogen Networks: The Expanding Role of Targeted Sequencing in Veterinary Medicine.
Biology (Basel). 2025 Aug 18;14(8):1075. doi: 10.3390/biology14081075.
2
Agnostic Sequencing for Detection of Viral Pathogens.
Clin Microbiol Rev. 2023 Mar 23;36(1):e0011922. doi: 10.1128/cmr.00119-22. Epub 2023 Feb 27.

本文引用的文献

1
Shotgun metagenomics, from sampling to analysis.
Nat Biotechnol. 2017 Sep 12;35(9):833-844. doi: 10.1038/nbt.3935.
2
Importation of yellow fever into China: assessing travel patterns.
J Travel Med. 2017 Jul 1;24(4). doi: 10.1093/jtm/tax008.
3
Yellow fever from Angola and Congo: a storm gathers.
Trop Doct. 2017 Apr;47(2):92-96. doi: 10.1177/0049475517699726.
5
Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.
Arch Pathol Lab Med. 2017 Jun;141(6):776-786. doi: 10.5858/arpa.2016-0539-RA. Epub 2017 Feb 7.
6
Zika's emerging threat for the Asia-Pacific region.
Lancet. 2016 Sep 10;388(10049):1026. doi: 10.1016/S0140-6736(16)31585-9.
8
Assessing the global threat from Zika virus.
Science. 2016 Aug 12;353(6300):aaf8160. doi: 10.1126/science.aaf8160. Epub 2016 Jul 14.
9
EPIDEMIOLOGY. Countering the Zika epidemic in Latin America.
Science. 2016 Jul 22;353(6297):353-4. doi: 10.1126/science.aag0219. Epub 2016 Jul 14.
10
A fatal yellow fever virus infection in China: description and lessons.
Emerg Microbes Infect. 2016 Jul 13;5(7):e69. doi: 10.1038/emi.2016.89.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验