From the ‡Section Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
§Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
Mol Cell Proteomics. 2018 Aug;17(8):1612-1626. doi: 10.1074/mcp.RA118.000720. Epub 2018 May 17.
Targeting of soluble lysosomal enzymes requires mannose 6-phosphate (M6P) signals whose formation is initiated by the hexameric N-acetylglucosamine (GlcNAc)-1-phosphotransferase complex (αβγ). Upon proteolytic cleavage by site-1 protease, the α/β-subunit precursor is catalytically activated but the functions of γ-subunits (Gnptg) in M6P modification of lysosomal enzymes are unknown. To investigate this, we analyzed the expression in mouse tissues, primary cultured cells, and in reporter mice , and found high amounts in the brain, eye, kidney, femur, vertebra and fibroblasts. Consecutively we performed comprehensive quantitative lysosomal proteome and M6P secretome analysis in fibroblasts of wild-type and mice mimicking the lysosomal storage disorder mucolipidosis III. Although the cleavage of the α/β-precursor was not affected by deficiency, the GlcNAc-1-phosphotransferase activity was significantly reduced. We purified lysosomes and identified 29 soluble lysosomal proteins by SILAC-based mass spectrometry exhibiting differential abundance in fibroblasts which was confirmed by Western blotting and enzymatic activity analysis for selected proteins. A subset of these lysosomal enzymes show also reduced M6P modifications, fail to reach lysosomes and are secreted, among them α-l-fucosidase and arylsulfatase B. Low levels of these enzymes correlate with the accumulation of non-degraded fucose-containing glycostructures and sulfated glycosaminoglycans in lysosomes. Incubation of fibroblasts with arylsulfatase B partially rescued glycosaminoglycan storage. Combinatorial treatments with other here identified missorted enzymes of this degradation pathway might further correct glycosaminoglycan accumulation and will provide a useful basis to reveal mechanisms of selective, Gnptg-dependent formation of M6P residues on lysosomal proteins.
靶向可溶性溶酶体酶需要甘露糖 6-磷酸 (M6P) 信号,其形成由六聚体 N-乙酰葡萄糖胺 (GlcNAc)-1-磷酸转移酶复合物 (αβγ) 启动。经位点 1 蛋白酶切割后,α/β 亚基前体被催化激活,但 γ 亚基 (Gnptg) 在溶酶体酶 M6P 修饰中的功能尚不清楚。为了研究这一点,我们分析了小鼠组织、原代培养细胞和报告小鼠中的表达,发现大脑、眼睛、肾脏、股骨、脊柱和成纤维细胞中含量很高。随后,我们在模拟溶酶体贮积症粘脂贮积症 III 的野生型和 小鼠的成纤维细胞中进行了全面的定量溶酶体蛋白质组和 M6P 分泌组分析。尽管 α/β-前体的切割不受 缺乏的影响,但 GlcNAc-1-磷酸转移酶活性显著降低。我们纯化了溶酶体,并通过基于 SILAC 的质谱法鉴定了 29 种可溶性溶酶体蛋白,这些蛋白在 成纤维细胞中的丰度不同,通过 Western 印迹和对选定蛋白的酶活性分析进行了验证。这些溶酶体酶中的一部分也表现出 M6P 修饰减少,无法到达溶酶体并被分泌,其中包括 α-l-岩藻糖苷酶和芳基硫酸酯酶 B。这些酶的低水平与未降解的含有岩藻糖的糖基结构和硫酸化糖胺聚糖在 溶酶体中的积累相关。用芳基硫酸酯酶 B 孵育 成纤维细胞可部分挽救糖胺聚糖的储存。用该降解途径中其他鉴定出的错配酶进行组合处理可能进一步纠正糖胺聚糖的积累,并为揭示选择性、Gnptg 依赖性形成溶酶体蛋白上 M6P 残基的机制提供有用的基础。