Suppr超能文献

基于质谱的神经退行性溶酶体贮积症蛋白质组学。

Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders.

机构信息

Department of Chemistry, University of Illinois at Chicago, USA.

出版信息

Mol Omics. 2022 May 11;18(4):256-278. doi: 10.1039/d2mo00004k.

Abstract

The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.

摘要

溶酶体的主要功能是降解不需要的物质,如脂质、蛋白质和核酸;因此,溶酶体系统的缺陷可能导致这些生物分子的降解和运输不当。与溶酶体功能障碍相关的疾病可能是致命的,被称为溶酶体贮积症(LSD),其总体发病率为每 5000 例活产儿中有 1 例。LSD 是由单个溶酶体和非溶酶体蛋白的突变引起的遗传性代谢疾病,导致大分子在体内积累。大多数 LSD 患者表现出神经退行性临床症状,以及其他器官的损伤。为了了解和监测这些疾病,并跟踪治疗进展,有必要发现新的生物标志物。在过去的十年中,基于质谱(MS)的蛋白质组学在许多疾病的生物标志物研究中蓬勃发展,包括神经退行性疾病,更具体地说,还有 LSD。在这篇综述中,讨论了 MS 蛋白质组学揭示的 LSD 疾病病理生理学和监测的生物标志物,包括神经鞘脂贮积症、法布雷病、神经元蜡样脂褐质沉积症、黏多糖贮积症、克拉伯病、黏脂贮积症和戈谢病的例子。

相似文献

1
Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders.
Mol Omics. 2022 May 11;18(4):256-278. doi: 10.1039/d2mo00004k.
2
Unifying biology of neurodegeneration in lysosomal storage diseases.
J Inherit Metab Dis. 2025 Jan;48(1):e12833. doi: 10.1002/jimd.12833.
3
A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.
Mol Pharm. 2016 Feb 1;13(2):357-368. doi: 10.1021/acs.molpharmaceut.5b00542. Epub 2016 Jan 11.
5
Lysosomal storage diseases--the horizon expands.
Nat Rev Neurol. 2013 Oct;9(10):583-98. doi: 10.1038/nrneurol.2013.163. Epub 2013 Aug 13.
6
Lysosomal storage disease overview.
Ann Transl Med. 2018 Dec;6(24):476. doi: 10.21037/atm.2018.11.39.
7
Lysosomal storage diseases.
Nat Rev Dis Primers. 2018 Oct 1;4(1):27. doi: 10.1038/s41572-018-0025-4.
8
Biomarkers for Lysosomal Storage Disorders with an Emphasis on Mass Spectrometry.
Int J Mol Sci. 2020 Apr 14;21(8):2704. doi: 10.3390/ijms21082704.
9
Impaired autophagy: The collateral damage of lysosomal storage disorders.
EBioMedicine. 2021 Jan;63:103166. doi: 10.1016/j.ebiom.2020.103166. Epub 2020 Dec 17.
10
Finding pathogenic commonalities between Niemann-Pick type C and other lysosomal storage disorders: Opportunities for shared therapeutic interventions.
Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165875. doi: 10.1016/j.bbadis.2020.165875. Epub 2020 Jun 6.

引用本文的文献

1
Advances in mass spectrometry of lipids for the investigation of Niemann-pick type C disease.
Lipids Health Dis. 2025 Jul 30;24(1):254. doi: 10.1186/s12944-025-02675-7.
2
Review: Utility of mass spectrometry in rare disease research and diagnosis.
NPJ Genom Med. 2025 Mar 31;10(1):29. doi: 10.1038/s41525-025-00487-3.
3
A blood-brain barrier-penetrant AAV gene therapy improves neurological function in symptomatic mucolipidosis IV mice.
Mol Ther Methods Clin Dev. 2024 May 21;32(2):101269. doi: 10.1016/j.omtm.2024.101269. eCollection 2024 Jun 13.
4
Comparative Hippocampal Proteome and Phosphoproteome in a Niemann-Pick, Type C1 Mouse Model Reveal Insights into Disease Mechanisms.
J Proteome Res. 2024 Jan 5;23(1):84-94. doi: 10.1021/acs.jproteome.3c00375. Epub 2023 Nov 24.
5
Brain cell type specific proteomics approach to discover pathological mechanisms in the childhood CNS disorder mucolipidosis type IV.
Front Mol Neurosci. 2023 Aug 7;16:1215425. doi: 10.3389/fnmol.2023.1215425. eCollection 2023.

本文引用的文献

1
Efficacy and safety of N-acetyl-L-leucine in Niemann-Pick disease type C.
J Neurol. 2022 Mar;269(3):1651-1662. doi: 10.1007/s00415-021-10717-0. Epub 2021 Aug 13.
3
GCase and LIMP2 Abnormalities in the Liver of Niemann Pick Type C Mice.
Int J Mol Sci. 2021 Mar 3;22(5):2532. doi: 10.3390/ijms22052532.
4
Loss of NPC1 enhances phagocytic uptake and impairs lipid trafficking in microglia.
Nat Commun. 2021 Feb 24;12(1):1158. doi: 10.1038/s41467-021-21428-5.
6
Diagnosis and Screening of Patients with Fabry Disease.
Ther Clin Risk Manag. 2020 Jun 22;16:551-558. doi: 10.2147/TCRM.S247814. eCollection 2020.
8
Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation.
Front Pharmacol. 2020 Apr 24;11:537. doi: 10.3389/fphar.2020.00537. eCollection 2020.
9
Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice.
J Lipid Res. 2020 Jul;61(7):1004-1013. doi: 10.1194/jlr.RA119000606. Epub 2020 May 5.
10
A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease.
J Clin Med. 2020 May 2;9(5):1325. doi: 10.3390/jcm9051325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验