From the ‡Department of Biochemistry, Center for Biomedical Mass Spectrometry.
§Bioinformatics Program Boston University, Boston, Massachusetts 02118.
Mol Cell Proteomics. 2018 Aug;17(8):1578-1590. doi: 10.1074/mcp.RA118.000766. Epub 2018 May 17.
Proteoglycans are distributed in all animal tissues and play critical, multifaceted, physiological roles. Expressed in a spatially and temporally regulated manner, these molecules regulate interactions among growth factors and cell surface receptors and play key roles in basement membranes and other extracellular matrices. Because of the high degree of glycosylation by glycosaminoglycan (GAG), -glycan and mucin-type -glycan classes, the peptide sequence coverage of complex proteoglycans is revealed poorly by standard mass spectrometry-based proteomics methods. As a result, there is little information concerning how proteoglycan site specific glycosylation changes during normal and pathological processes. Here, we developed a workflow to improve sequence coverage and identification of glycosylated peptides in proteoglycans. We applied this workflow to the small leucine-rich proteoglycan decorin and three hyalectan proteoglycans: neurocan, brevican, and aggrecan.We characterized glycosylation of these proteoglycans using LC-MS methods easily implemented on instruments widely used in proteomics laboratories. For decorin, we assigned the linker-glycosite and three -glycosylation sites. For neurocan and brevican, we identified densely glycosylated mucin-like regions in the extended domains. For aggrecan, we identified 50 linker-glycosites and mucin-type -glycosites in the extended region and -glycosites in the globular domains, many of which are novel and have not been observed previously. Most importantly, we demonstrate an LC-MS and bioinformatics approach that will enable routine analysis of proteoglycan glycosylation from biological samples to assess their role in pathophysiology.
蛋白聚糖分布于所有动物组织中,发挥着关键的、多方面的生理作用。这些分子以时空调节的方式表达,调节生长因子和细胞表面受体之间的相互作用,并在基底膜和其他细胞外基质中发挥关键作用。由于糖胺聚糖 (GAG)、聚糖和粘蛋白型聚糖类的高度糖基化,标准的基于质谱的蛋白质组学方法对复杂蛋白聚糖的肽序列覆盖率揭示得很差。因此,关于蛋白聚糖特定位点的糖基化如何在正常和病理过程中发生变化,相关信息很少。在这里,我们开发了一种工作流程,以提高蛋白聚糖中糖肽的序列覆盖率和鉴定。我们将此工作流程应用于小富含亮氨酸的蛋白聚糖decorin 和三种透明质酸蛋白聚糖:神经蛋白聚糖、短蛋白聚糖和聚集蛋白聚糖。我们使用广泛用于蛋白质组学实验室的仪器上易于实施的 LC-MS 方法来表征这些蛋白聚糖的糖基化。对于 decorin,我们分配了连接糖基位点和三个糖基化位点。对于神经蛋白聚糖和短蛋白聚糖,我们在扩展结构域中鉴定了高度糖基化的粘蛋白样区域。对于聚集蛋白聚糖,我们在扩展区域和球形结构域中鉴定了 50 个连接糖基位点和粘蛋白型聚糖位点,其中许多是新的,以前没有观察到。最重要的是,我们展示了一种 LC-MS 和生物信息学方法,该方法将能够从生物样本中常规分析蛋白聚糖糖基化,以评估其在病理生理学中的作用。