Suppr超能文献

基于质谱的糖组学和蛋白质组学分析的串联溶液内消化方案。

Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis.

机构信息

Boston University School of Medicine, Boston University, Department of Biochemistry, Boston, 02118, USA.

出版信息

Mol Omics. 2020 Aug 1;16(4):364-376. doi: 10.1039/d0mo00019a. Epub 2020 Apr 20.

Abstract

Advancement in mass spectrometry has revolutionized the field of proteomics. However, there remains a gap in the analysis of protein post-translational modifications (PTMs), particularly for glycosylation. Glycosylation, the most common form of PTM, is involved in most biological processes; thus, analysis of glycans along with proteins is crucial to answering important biologically relevant questions. Of particular interest is the brain extracellular matrix (ECM), which has been called the "final Frontier" in neuroscience, which consists of highly glycosylated proteins. Among these, proteoglycans (PGs) contain large glycan structures called glycosaminoglycans (GAGs) that form crucial ECM components, including perineuronal nets (PNNs), shown to be altered in neuropsychiatric diseases. Thus, there is a growing need for high-throughput methods that combine GAG (glycomics) and PGs (proteomics) analysis to unravel the complete biological picture. The protocol presented here integrates glycomics and proteomics to analyze multiple classes of biomolecules. We use a filter-aided sample preparation (FASP) type serial in-solution digestion of GAG classes, including hyaluronan (HA), chondroitin sulfate (CS), and heparan sulfate (HS), followed by peptides. The GAGs and peptides are then cleaned and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is an efficient and economical way of processing tissue or cell lysates to isolate various GAG classes and peptides from the same sample. The method is more efficient (single-pot) than available parallel (multi-pot) release methods, and removal of GAGs facilitates the identification of the proteins with higher peptide-coverage than using conventional-proteomics. Overall, we demonstrate a high-throughput & efficient protocol for mass spectrometry-based glycomic and proteomic analysis (data are available via ProteomeXchange with identifier PXD017513).

摘要

质谱技术的进步彻底改变了蛋白质组学领域。然而,在蛋白质翻译后修饰(PTMs)的分析方面仍存在差距,特别是对于糖基化。糖基化是最常见的 PTM 形式,参与了大多数生物过程;因此,分析聚糖以及蛋白质对于回答重要的生物学相关问题至关重要。特别值得关注的是脑细胞外基质(ECM),它被称为神经科学的“最后边界”,由高度糖基化的蛋白质组成。其中,蛋白聚糖(PGs)含有称为糖胺聚糖(GAGs)的大聚糖结构,这些结构形成了至关重要的 ECM 成分,包括神经周围网络(PNNs),在神经精神疾病中发现其发生改变。因此,人们越来越需要结合 GAG(糖组学)和 PGs(蛋白质组学)分析的高通量方法,以揭示完整的生物学图景。本方案介绍了一种整合糖组学和蛋白质组学分析的方法,用于分析多种生物分子。我们使用过滤辅助样品制备(FASP)类型的连续溶液消化 GAG 类,包括透明质酸(HA)、软骨素硫酸盐(CS)和硫酸肝素(HS),然后是肽。然后使用液相色谱-串联质谱(LC-MS/MS)对 GAG 和肽进行清洗和分析。该方案是一种高效且经济的方法,可以处理组织或细胞裂解物,从同一样品中分离各种 GAG 类和肽。与现有的平行(多管)释放方法相比,该方法效率更高(一锅法),并且去除 GAG 有助于鉴定具有更高肽覆盖率的蛋白质,比使用传统蛋白质组学方法更高。总体而言,我们展示了一种基于质谱的糖组学和蛋白质组学分析的高通量和高效方案(数据可通过 ProteomeXchange 以标识符 PXD017513 获得)。

相似文献

引用本文的文献

3
Mechanisms of assembly and remodelling of the extracellular matrix.细胞外基质的组装和重塑机制。
Nat Rev Mol Cell Biol. 2024 Nov;25(11):865-885. doi: 10.1038/s41580-024-00767-3. Epub 2024 Sep 2.
9
High sensitivity glycomics in biomedicine.生物医学中的高灵敏度糖组学。
Mass Spectrom Rev. 2022 Nov;41(6):1014-1039. doi: 10.1002/mas.21730. Epub 2021 Sep 7.

本文引用的文献

2
Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules.基质组学分子的蛋白质组学、糖组学和糖蛋白质组学。
Mol Cell Proteomics. 2019 Nov;18(11):2138-2148. doi: 10.1074/mcp.R119.001543. Epub 2019 Aug 30.
6
Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway.衰老大脑黑质纹状体通路中的糖基化和蛋白质组变化。
Mol Cell Proteomics. 2018 Sep;17(9):1778-1787. doi: 10.1074/mcp.RA118.000680. Epub 2018 Jun 18.
7
Application of network smoothing to glycan LC-MS profiling.网络平滑在糖链 LC-MS 分析中的应用。
Bioinformatics. 2018 Oct 15;34(20):3511-3518. doi: 10.1093/bioinformatics/bty397.
9
Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses.糖组学和糖蛋白质组学分析的质谱方法。
Chem Rev. 2018 Sep 12;118(17):7886-7930. doi: 10.1021/acs.chemrev.7b00732. Epub 2018 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验