Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
Department of Chemistry, University of California, Riverside, California, 92521, USA.
Nat Commun. 2018 May 17;9(1):1979. doi: 10.1038/s41467-018-04410-6.
Atom-by-atom engineering of nanomaterials requires atomic-level knowledge of the size evolution mechanism of nanoparticles, which remains one of the greatest mysteries in nanochemistry. Here we reveal atomic-level dynamics of size evolution reaction of molecular-like nanoparticles, i.e., nanoclusters (NCs) by delicate mass spectrometry (MS) analyses. The model size-conversion reaction is [Au(SR)] → [Au(SR)] (SR = thiolate ligand). We demonstrate that such isoelectronic (valence electron count is 8 in both NCs) size-conversion occurs by a surface-motif-exchange-induced symmetry-breaking core structure transformation mechanism, surfacing as a definitive reaction of [Au(SR)] + 2 [Au(SR)] → [Au(SR)] + 2 [Au(SR)]. The detailed tandem MS analyses further suggest the bond susceptibility hierarchies in feed and final Au NCs, shedding mechanistic light on cluster reaction dynamics at atomic level. The MS-based mechanistic approach developed in this study also opens a complementary avenue to X-ray crystallography to reveal size evolution kinetics and dynamics.
纳米材料的原子级工程需要对纳米粒子的尺寸演化机制有原子级的了解,而这仍然是纳米化学中最大的谜团之一。在这里,我们通过精细的质谱(MS)分析揭示了分子样纳米粒子(即纳米团簇(NCs))的尺寸演化反应的原子级动力学。该模型尺寸转换反应为 [Au(SR)] → [Au(SR)](SR = 硫醇配体)。我们证明,这种等电子(两种 NCs 的价电子数均为 8)尺寸转换是通过表面基序交换诱导的对称破缺核结构转变机制发生的,表现为 [Au(SR)] + 2 [Au(SR)] → [Au(SR)] + 2 [Au(SR)] 的明确反应。详细的串联 MS 分析进一步表明了进料和最终 Au NC 中键的敏感性层次,为原子水平上的团簇反应动力学提供了机制上的启示。本研究中开发的基于 MS 的机理方法也为 X 射线晶体学提供了一条补充途径,以揭示尺寸演化的动力学和动态。