Yao Qiaofeng, Wu Zhennan, Liu Zhihe, Lin Yingzheng, Yuan Xun, Xie Jianping
Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207.
Chem Sci. 2020 Nov 23;12(1):99-127. doi: 10.1039/d0sc04620e.
Thiolate-protected noble metal (, Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (, M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (, sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this may increase the acceptance of metal NCs in various fields.
硫醇盐保护的贵金属(如金和银)纳米团簇(NCs)是核心尺寸小于3纳米的超小颗粒。由于在这种超小尺寸范围内存在强烈的量子限制效应和多样的原子堆积模式,贵金属纳米团簇表现出许多类似分子的光学、磁性和电子性质,使其成为一个新兴的“金属分子”家族。基于这种类似分子的结构和性质,单个贵金属纳米团簇在许多化学反应中表现为分子实体,并对各种离子、分子和其他金属纳米团簇表现出结构敏感的分子反应性。尽管这种分子反应性决定了纳米团簇在传感器、生物医学和催化等各个领域的应用,但目前文献中仍缺乏对贵金属纳米团簇在分子和原子水平上的分子相互作用/反应基本原理的系统总结。在此,我们基于典型的M(0)@M(i)-SR核壳结构方案,讨论了在理解和利用贵金属纳米团簇在其合成、自组装和应用场景中的分子相互作用/反应方面的最新进展,其中M和SR分别是金属原子和硫醇盐配体。特别是,合成和表征技术的不断发展使得能够以分子纯度和原子精确的结构分辨率制备贵金属纳米团簇。这种分子纯度和原子精确的结构,再加上理论计算的巨大帮助,揭示了贵金属纳米团簇(如M(0)核、M-S界面和SR配体)在其各种结构层次中用于分子相互作用/反应的活性位点。对贵金属纳米团簇在合成、自组装和应用(如传感器、生物医学和催化)中的这种分子相互作用/反应的剖析构成了我们讨论的另一个核心。本文中所举例的贵金属纳米团簇分子相互作用/反应的基础和实用性可能会提高金属纳米团簇在各个领域的认可度。