Suppr超能文献

基于司美替尼的疗法在葡萄膜黑色素瘤患者来源异种移植模型中的应用

Selumetinib-based therapy in uveal melanoma patient-derived xenografts.

作者信息

Decaudin Didier, El Botty Rania, Diallo Béré, Massonnet Gerald, Fleury Justine, Naguez Adnan, Raymondie Chloé, Davies Emma, Smith Aaron, Wilson Joanne, Howes Colin, Smith Paul D, Cassoux Nathalie, Piperno-Neumann Sophie, Roman-Roman Sergio, Némati Fariba

机构信息

Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University Paris, Paris, France.

Department of Medical Oncology, Institut Curie, Paris, France.

出版信息

Oncotarget. 2018 Apr 24;9(31):21674-21686. doi: 10.18632/oncotarget.24670.

Abstract

The prognosis of metastatic uveal melanoma (UM) is among the worst of all human cancers. The identification of near-ubiquitous GNAQ/GNA11 mutations and the activation of MAPK signaling in UM have raised hopes of more effective, targeted therapies, based on MEK inhibition, for example. We evaluated the potential of drug combinations to increase the efficacy of the MEK inhibitor selumetinib (AZD6244, ARRY-142886), in UM cell lines and Patient-Derived Xenografts. We first evaluated the combination of selumetinib and DTIC. We found that DTIC did not improve the or antitumor efficacy of selumetinib, consistent with the outcome of the SUMIT clinical trial assessing the efficacy of this combination in UM. We then tested additional selumetinib combinations with the chemotherapy agent docetaxel, the ERK inhibitor AZ6197, and the mTORC1/2 inhibitor, vistusertib (AZD2014). Combinations of selumetinib with ERK and mTORC1/2 inhibitors appeared to be the most effective in UM PDX models.

摘要

转移性葡萄膜黑色素瘤(UM)的预后是所有人类癌症中最差的之一。UM中几乎普遍存在的GNAQ/GNA11突变的鉴定以及MAPK信号通路的激活,引发了人们对例如基于MEK抑制的更有效靶向治疗的期望。我们评估了联合用药在UM细胞系和患者来源的异种移植模型中提高MEK抑制剂司美替尼(AZD6244,ARRY - 142886)疗效的潜力。我们首先评估了司美替尼与达卡巴嗪(DTIC)的联合用药。我们发现DTIC并未提高司美替尼的抗肿瘤疗效,这与评估该联合用药在UM中疗效的SUMIT临床试验结果一致。然后,我们测试了司美替尼与化疗药物多西他赛、ERK抑制剂AZ6197以及mTORC1/2抑制剂维司力农(AZD2014)的其他联合用药。在UM患者来源的异种移植模型中,司美替尼与ERK和mTORC1/2抑制剂的联合用药似乎最为有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25e9/5955168/a63acd73973c/oncotarget-09-21674-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验