Coslovich Daniele, Ozawa Misaki, Kob Walter
Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, France.
Eur Phys J E Soft Matter. 2018 May 17;41(5):62. doi: 10.1140/epje/i2018-11671-2.
The physical behavior of glass-forming liquids presents complex features of both dynamic and thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover, conventional simulations are barely able to cover the range of temperatures at which these crossovers usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using efficient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the mode-coupling theory, [Formula: see text]. We find that below [Formula: see text] the analysis is hampered by partial crystallization of the metastable liquid, which nucleates extended regions populated by large particles arranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a regular manner down to [Formula: see text] . Possible thermodynamic anomalies suggested by previous studies can thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilibrium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and Monte Carlo simulations to probe the equilibrium dynamics down to [Formula: see text]. A temperature-derivative analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around [Formula: see text]. Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming liquids.
玻璃形成液体的物理行为呈现出动态和热力学性质的复杂特征。一些研究表明存在热力学异常以及动态性质中的交叉现象,但其起源和普遍程度难以评估。此外,传统模拟几乎无法覆盖这些交叉现象通常发生的温度范围。为了解决这些问题,我们使用基于多CPU和多GPU并行回火的高效协议对Kob-Andersen Lennard-Jones混合物进行模拟。我们的设置使我们能够在远低于模式耦合理论临界温度[公式:见原文]的平衡状态下探测液体的热力学和动力学。我们发现,在[公式:见原文]以下,亚稳液体的部分结晶阻碍了分析,这种结晶形成了由排列成面心立方结构的大粒子组成的扩展区域。通过滤除结晶样品,我们发现比热以规则方式下降至[公式:见原文]。因此,先前研究提出的可能的热力学异常仅可能出现在相图中系统高度亚稳的区域。利用从并行回火模拟获得的平衡构型,我们进行分子动力学和蒙特卡罗模拟,以探测低至[公式:见原文]的平衡动力学。对弛豫时间和扩散数据进行温度导数分析,使我们能够评估[公式:见原文]附近的不同动态情况。动态交叉的迹象来自四点动态磁化率的分析。最后,我们讨论了未来可能的数值策略,以阐明玻璃形成液体中交叉现象的本质。