Leibniz Institute of photonic technology (IPHT), Albert-Einstein-Straße 9, D-07745 Jena, Germany.
Nanoscale. 2018 May 31;10(21):9830-9839. doi: 10.1039/c8nr02783h.
The optical response of realistic 3D plasmonic substrates composed of randomly shaped particles of different size and interparticle distance distributions in addition to nanometer scale surface roughness is intrinsically challenging to simulate due to computational limitations. Here, we present a Finite Element Method (FEM)-based methodology that bridges in-depth theoretical investigations and experimental optical response of plasmonic substrates composed of such silver nanoparticles. Parametrized scanning electron microscopy (SEM) images of surface enhanced Raman spectroscopy (SERS) active substrate and tip-enhanced Raman spectroscopy (TERS) probes are used to simulate the far-and near-field optical response. Far-field calculations are consistent with experimental dark field spectra and charge distribution images reveal for the first time in arbitrary structures the contributions of interparticle hybridized modes such as sub-radiant and super-radiant modes that also locally organize as basic units for Fano resonances. Near-field simulations expose the spatial position-dependent impact of hybridization on field enhancement. Simulations of representative sections of TERS tips are shown to exhibit the same unexpected coupling modes. Near-field simulations suggest that these modes can contribute up to 50% of the amplitude of the plasmon resonance at the tip apex but, interestingly, have a small effect on its frequency in the visible range. The band position is shown to be extremely sensitive to particle nanoscale roughness, highlighting the necessity to preserve detailed information at both the largest and the smallest scales. To the best of our knowledge, no currently available method enables reaching such a detailed description of large scale realistic 3D plasmonic systems.
由于计算限制,具有不同尺寸和粒子间距离分布的随机形状粒子以及纳米级表面粗糙度的实际 3D 等离子体基底的光学响应本质上难以模拟。在这里,我们提出了一种基于有限元方法(FEM)的方法,该方法将深入的理论研究与由这种银纳米粒子组成的等离子体基底的实验光学响应联系起来。表面增强拉曼光谱(SERS)活性基底和尖端增强拉曼光谱(TERS)探针的参数化扫描电子显微镜(SEM)图像用于模拟远场和近场光学响应。远场计算与实验暗场光谱一致,电荷分布图像首次揭示了任意结构中粒子间杂化模式(如亚辐射和超辐射模式)的贡献,这些模式也局部组织为 Fano 共振的基本单元。近场模拟揭示了杂化对场增强的空间位置依赖性的影响。显示了 TERS 尖端的代表性部分的模拟,其表现出相同的意外耦合模式。近场模拟表明,这些模式可以在尖端顶点处的等离子体共振幅度中贡献高达 50%,但有趣的是,在可见光范围内对其频率的影响很小。带位置对粒子纳米级粗糙度极其敏感,突出了在最大和最小尺度上都保留详细信息的必要性。据我们所知,目前没有任何方法可以实现对大规模实际 3D 等离子体系统的这种详细描述。