Li Yuhang, Wang Dong, Liang Zhengchen, Zeng Lingxiao, Li Wenxue, Xie Peng, Ding Qi, Zhang Hong, Schaaf Peter, Wang Wei
College of Physics, Sichuan University, Chengdu 610064, China.
Institute for Micro and Nanotechnologies MacroNano(R) and Institute for Materials Science and Engineering, Chair of Materials for Electrical Engineering and Electronics, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):36189-36199. doi: 10.1021/acsami.2c05652. Epub 2022 Jun 29.
Combining black silicon (BS), a nanostructured silicon containing highly roughened surface morphology with plasmonic materials, is becoming an attractive approach for greatly enhancing light-matter interactions with promising applications of sensing and light harvesting. However, precisely describing the optical response of a heavily decorated BS structure is still challenging due to the increasing complexity in surface morphology and plasmon hybridization. Here, we propose and fully characterize BS-based multistacked nanostructures with randomly distributed nanoparticles on the highly roughened nonflat surface. We demonstrate a realistic 3D modeling methodology based on parametrized scanning electron microscopy images that provides high-precision morphology details, successfully linking the theoretical analysis with experimental optical response of the complex nanostructures. Far-field calculations very nicely reproduce experimental reflectance spectra, revealing the dependency of light trapping on the thickness of the conformal reflector and the atop nanoparticle size. Near-field analysis clearly identifies three types of stochastic "hotspots". Their contribution to the overall field enhancement is shown to be very much sensitive to the nanoscale surface morphology. The simulated near-field property is then used to examine the measured surface-enhanced Raman scattering (SERS) response on the multistacked structures. The present modeling approach combined with spectroscopic characterizations is expected to offer a powerful tool for the precise description of the optical response of other large-scale highly disordered realistic 3D systems.
将黑色硅(BS),一种具有高度粗糙表面形态的纳米结构硅与等离子体材料相结合,正成为一种极具吸引力的方法,可极大地增强光与物质的相互作用,并有望应用于传感和光捕获领域。然而,由于表面形态和等离子体杂交的复杂性不断增加,精确描述高度修饰的BS结构的光学响应仍然具有挑战性。在此,我们提出并全面表征了基于BS的多层纳米结构,其在高度粗糙的非平坦表面上具有随机分布的纳米颗粒。我们展示了一种基于参数化扫描电子显微镜图像的逼真三维建模方法,该方法提供了高精度的形态细节,成功地将理论分析与复杂纳米结构的实验光学响应联系起来。远场计算很好地再现了实验反射光谱,揭示了光捕获对共形反射器厚度和顶部纳米颗粒尺寸的依赖性。近场分析清楚地识别出三种类型的随机“热点”。结果表明,它们对整体场增强的贡献对纳米级表面形态非常敏感。然后,利用模拟的近场特性来研究多层结构上测量的表面增强拉曼散射(SERS)响应。预计目前的建模方法与光谱表征相结合,将为精确描述其他大规模高度无序的逼真三维系统的光学响应提供一个强大的工具。