Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
Phys Rev E. 2018 Mar;97(3-1):032416. doi: 10.1103/PhysRevE.97.032416.
Persistence of motion is the tendency of an object to maintain motion in a direction for short time scales without necessarily being biased in any direction in the long term. One of the most appropriate mathematical tools to study this behavior is an agent-based velocity-jump process. In the absence of agent-agent interaction, the mean-field continuum limit of the agent-based model (ABM) gives rise to the well known hyperbolic telegraph equation. When agent-agent interaction is included in the ABM, a strictly advective system of partial differential equations (PDEs) can be derived at the population level. However, no diffusive limit of the ABM has been obtained from such a model. Connecting the microscopic behavior of the ABM to a diffusive macroscopic description is desirable, since it allows the exploration of a wider range of scenarios and establishes a direct connection with commonly used statistical tools of movement analysis. In order to connect the ABM at the population level to a diffusive PDE at the population level, we consider a generalization of the agent-based velocity-jump process on a two-dimensional lattice with three forms of agent interaction. This generalization allows us to take a diffusive limit and obtain a faithful population-level description. We investigate the properties of the model at both the individual and population levels and we elucidate some of the models' key characteristic features. In particular, we show an intrinsic anisotropy inherent to the models and we find evidence of a spontaneous form of aggregation at both the micro- and macroscales.
持续运动是指物体在短时间内保持运动方向的趋势,而无需在长期内偏向任何方向。研究这种行为最适当的数学工具之一是基于代理的速度跳跃过程。在不存在代理间相互作用的情况下,基于代理的模型(ABM)的平均场连续极限产生了著名的双曲电报方程。当在 ABM 中包含代理间相互作用时,可以在群体水平上推导出严格的平流型偏微分方程(PDE)系统。然而,从这样的模型中还没有得到 ABM 的扩散极限。将 ABM 的微观行为与扩散宏观描述联系起来是可取的,因为它允许探索更广泛的场景,并与运动分析常用的统计工具建立直接联系。为了将群体水平上的 ABM 与群体水平上的扩散 PDE 联系起来,我们考虑了二维格点上基于代理的速度跳跃过程的推广,该过程具有三种代理相互作用形式。这种推广允许我们进行扩散限制并获得忠实的群体水平描述。我们在个体和群体水平上研究模型的性质,并阐明了模型的一些关键特征。特别是,我们展示了模型固有的内在各向异性,并在微观和宏观尺度上都发现了自发聚集的证据。