Suppr超能文献

基于生物启发神经网络的随机主体模型数据预测与预报。

Forecasting and Predicting Stochastic Agent-Based Model Data with Biologically-Informed Neural Networks.

机构信息

Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, 08628, USA.

出版信息

Bull Math Biol. 2024 Sep 23;86(11):130. doi: 10.1007/s11538-024-01357-2.

Abstract

Collective migration is an important component of many biological processes, including wound healing, tumorigenesis, and embryo development. Spatial agent-based models (ABMs) are often used to model collective migration, but it is challenging to thoroughly predict these models' behavior throughout parameter space due to their random and computationally intensive nature. Modelers often coarse-grain ABM rules into mean-field differential equation (DE) models. While these DE models are fast to simulate, they suffer from poor (or even ill-posed) ABM predictions in some regions of parameter space. In this work, we describe how biologically-informed neural networks (BINNs) can be trained to learn interpretable BINN-guided DE models capable of accurately predicting ABM behavior. In particular, we show that BINN-guided partial DE (PDE) simulations can (1) forecast future spatial ABM data not seen during model training, and (2) predict ABM data at previously-unexplored parameter values. This latter task is achieved by combining BINN-guided PDE simulations with multivariate interpolation. We demonstrate our approach using three case study ABMs of collective migration that imitate cell biology experiments and find that BINN-guided PDEs accurately forecast and predict ABM data with a one-compartment PDE when the mean-field PDE is ill-posed or requires two compartments. This work suggests that BINN-guided PDEs allow modelers to efficiently explore parameter space, which may enable data-driven tasks for ABMs, such as estimating parameters from experimental data. All code and data from our study is available at https://github.com/johnnardini/Forecasting_predicting_ABMs .

摘要

群体迁移是许多生物学过程的重要组成部分,包括伤口愈合、肿瘤发生和胚胎发育。空间基于代理的模型 (ABM) 通常用于模拟群体迁移,但由于其随机性和计算密集性,很难彻底预测这些模型在整个参数空间中的行为。建模者通常将 ABM 规则粗粒化为平均场微分方程 (DE) 模型。虽然这些 DE 模型模拟速度很快,但在某些参数空间区域,它们的预测效果较差(甚至不适定)。在这项工作中,我们描述了如何训练生物启发式神经网络 (BINN) 以学习可解释的 BINN 引导的 DE 模型,从而能够准确预测 ABM 行为。特别是,我们表明,BINN 引导的偏微分方程 (PDE) 模拟可以 (1) 预测在模型训练期间未看到的未来空间 ABM 数据,以及 (2) 预测以前未探索过的参数值的 ABM 数据。后一个任务是通过将 BINN 引导的 PDE 模拟与多元插值相结合来实现的。我们使用三个模拟群体迁移的案例研究 ABM 来演示我们的方法,这些 ABM 模仿细胞生物学实验,发现 BINN 引导的 PDE 在平均场 PDE 不适定或需要两个隔室时,可以准确地预测和预测 ABM 数据。这项工作表明,BINN 引导的 PDE 允许建模者有效地探索参数空间,这可能为 ABM 实现数据驱动的任务提供便利,例如从实验数据中估计参数。我们研究的所有代码和数据都可在 https://github.com/johnnardini/Forecasting_predicting_ABMs 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验