Centre for Surface Chemistry and Catalysis KU Leuven Chem & Tech, Celestijnenlaan 200F, Postbus 2461 3001 Leuven, Belgium.
Indian Institute of Technology Roorkee, Roorkee 247667, India.
Bioresour Technol. 2018 Sep;263:532-540. doi: 10.1016/j.biortech.2018.05.002. Epub 2018 May 2.
This work aimed at investigating simultaneous hydrolysis of cellulose and in-situ foulant degradation in a cellulose fed superparamagnetic biocatalytic membrane reactor (BMR). In this reactor, a dynamic layer of superparamagnetic bionanocomposites with immobilized cellulolytic enzymes were reversibly immobilized on superparamagnetic polymeric membrane using an external magnetic field. The formation of a dynamic layer of bionanocomposites on the membrane helped to prevent direct membrane-foulant interaction. Due to in-situ biocatalysis, there was limited filtration resistance. Simultaneous separation of the product helped to avoid enzyme product inhibition, achieve constant reaction rate over time and 50% higher enzyme efficiency than batch reactor. Stable enzyme immobilization and the ability to keep enzyme in the system for long period helped to achieve continuous productivity at very low enzyme but high solid loading, while also reducing the extent of membrane fouling. Hence, the BMR paves a path for sustainable production of bioethanol from the cheaply available lignocellulose.
本工作旨在研究纤维素的同步水解和原位污垢降解在纤维素进料的超顺磁生物催化膜反应器 (BMR) 中的情况。在该反应器中,利用外加磁场将具有固定化纤维素酶的超顺磁生物纳米复合材料的动态层可逆地固定在超顺磁聚合物膜上。膜上形成的生物纳米复合材料动态层有助于防止膜与污垢的直接相互作用。由于原位生物催化,过滤阻力有限。产物的同步分离有助于避免酶产物抑制,实现随时间的恒反应速率和比批式反应器高 50%的酶效率。稳定的酶固定化和使酶在系统中保持较长时间的能力有助于在非常低的酶但高固体负载下实现连续生产力,同时也减少了膜污染的程度。因此,BMR 为从廉价的木质纤维素可持续生产生物乙醇铺平了道路。