Medway School of Pharmacy, University of Kent, Central Ave, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
FOCAS Research Institute, Dublin Institute of Technology, Kevin St., Dublin 8, Ireland.
Colloids Surf B Biointerfaces. 2018 Sep 1;169:242-248. doi: 10.1016/j.colsurfb.2018.04.064. Epub 2018 May 16.
The dissolution of microporous silica nanoparticles (NP) in aqueous environments of different biologically relevant pH was studied in order to assess their potential as drug delivery vehicles. Silica NPs, loaded with fluorescein, were prepared using different organosilane precursors (tetraethoxysilane, ethyl triethoxysilane or a 1:1 molar ratio of both) and NP dissolution was evaluated in aqueous conditions at pH 4, pH 6 and pH 7.4. These conditions correspond to the acidity of the intracellular environment (late endosome, early endosome, cytosol respectively) and gastrointestinal tract ('fed' stomach, duodenum and jejunum respectively). All NPs degraded at pH 6 and pH 7.4, while no dissolution was observed at pH 4. NP dissolution could be clearly visualised as mesoporous hollows and surface defects using electron microscopy, and was supported by UV-vis, fluorimetry and DLS data. The dissolution profiles of the NPs are particularly suited to the requirements of oral drug delivery, whereby NPs must resist degradation in the harsh acidic conditions of the stomach (pH 4), but dissolve and release their cargo in the small intestine (pH 6-7.4). Particle cores made solely of ethyl triethoxysilane exhibited a 'burst release' of encapsulated fluorescein at pH 6 and pH 7.4, whereas NPs synthesised with tetraethoxysilane released fluorescein in a more sustained fashion. Thus, by varying the organosilane precursor used in NP formation, it is possible to modify particle dissolution rates and tune the release profile of encapsulated fluorescein. The flexible synthesis afforded by silica NPs to achieve pH-responsive dissolution therefore makes this class of nanomaterial an adaptable platform that may be well suited to oral delivery applications.
为评估其作为药物传递载体的潜力,研究了在不同具有生物学相关性的 pH 值的水相环境中,微孔二氧化硅纳米颗粒(NP)的溶解情况。采用不同的有机硅烷前体(四乙氧基硅烷、乙基三乙氧基硅烷或两者 1:1 的摩尔比)制备负载荧光素的二氧化硅 NP,并在 pH 值为 4、6 和 7.4 的水条件下评估 NP 的溶解情况。这些条件分别对应于细胞内环境的酸度(晚期内涵体、早期内涵体、细胞质)和胃肠道(“进食”胃、十二指肠和空肠)。所有 NP 在 pH 值为 6 和 7.4 时均降解,而在 pH 值为 4 时则观察不到溶解。电子显微镜可清楚地观察到 NP 溶解形成的中孔空心和表面缺陷,并且得到了紫外-可见分光光度法、荧光光度法和 DLS 数据的支持。NP 的溶解曲线特别适合口服药物传递的要求,即 NP 必须在胃(pH 值为 4)的恶劣酸性条件下抵抗降解,但必须在小肠(pH 值为 6-7.4)中溶解并释放其货物。仅由乙基三乙氧基硅烷制成的粒子核在 pH 值为 6 和 7.4 时表现出对包封荧光素的“突释”,而用四乙氧基硅烷合成的 NP 则以更持续的方式释放荧光素。因此,通过改变 NP 形成中使用的有机硅烷前体,可以改变粒子溶解速率并调整包封荧光素的释放曲线。因此,二氧化硅 NP 实现 pH 响应性溶解的灵活合成使此类纳米材料成为一种适应性强的平台,可能非常适合口服递送应用。