Suppr超能文献

人体腹膜微循环的术中事件暗场成像

Intraoperative Incident Dark Field Imaging of the Human Peritoneal Microcirculation.

作者信息

Uz Zühre, Kastelein Arnoud W, Milstein Dan M J, Liu Dan, Rassam Fadi, Veelo Denise P, Roovers Jan-Paul W R, Ince Can, van Gulik Thomas M

机构信息

Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands.

Department of Translational Physiology, Academic Medical Center, Amsterdam, the Netherlands.

出版信息

J Vasc Res. 2018;55(3):136-143. doi: 10.1159/000488392. Epub 2018 May 18.

Abstract

BACKGROUND/AIMS: This study describes the peritoneal microcirculation, compares quantitative parameters and angioarchitecture to the standard of sublingual microcirculatory assessment, and determines the practical feasibility of this method.

METHODS

Incident dark field imaging was performed of the peritoneum and sublingually to determine angioarchitecture, total and perfused vessel density (TVD and PVD), the proportion of perfused vessels (PPV), the microvascular flow index (MFI) and image acquisition time.

RESULTS

Peritoneal angioarchitecture was characterized by a quadrangular network of longitudinally oriented capillaries, often flanked by fat cells. Differences between peritoneal and sublingual microcirculation were observed with regard to TVD (peritoneum 12 mm/mm2 [95% CI 10-14] vs. sublingual 23 mm/mm2 [95% CI 21-25]; p < 0.0001), PVD (peritoneum 11 mm/mm2 [95% CI 9-13] vs. sublingual 23 mm/mm2 [95% CI 21-25]; p < 0.0001), PPV (peritoneum 88% [95% CI 79-97] vs. sublingual 99% [95% CI 99-100]; p = 0.014), and MFI (peritoneum 3 [IQR 2.3-3.0] vs. sublingual 3 [IQR 3.0-3.0]; p = 0.012). There was no difference in image acquisition time (peritoneum 2: 34 min [95% CI 1: 49-3: 19] vs. sublingual 2: 38 [95% CI 1: 37-3: 32]; p = 0.916).

CONCLUSION

The peritoneal microcirculation was characterized by a low capillary density and a distinctive angioarchitecture. The possibility of peri-toneal microcirculatory assessment offers promise for the study of peritoneal (patho-)physiology and (monitoring or detection of) associated diseases.

摘要

背景/目的:本研究描述了腹膜微循环,将定量参数和血管结构与舌下微循环评估标准进行比较,并确定该方法的实际可行性。

方法

对腹膜和舌下进行入射暗场成像,以确定血管结构、总血管密度和灌注血管密度(TVD和PVD)、灌注血管比例(PPV)、微血管血流指数(MFI)以及图像采集时间。

结果

腹膜血管结构的特征是由纵向排列的毛细血管组成的四边形网络,常伴有脂肪细胞。在TVD(腹膜12mm/mm²[95%CI 10 - 14] vs.舌下23mm/mm²[95%CI 21 - 25];p < 0.0001)、PVD(腹膜11mm/mm²[95%CI 9 - 13] vs.舌下23mm/mm²[95%CI 21 - 25];p < 0.0001)、PPV(腹膜88%[95%CI 79 - 97] vs.舌下99%[95%CI 99 - 100];p = 0.014)和MFI(腹膜3[IQR 2.3 - 3.0] vs.舌下3[IQR 3.0 - 3.0];p = 0.012)方面,观察到腹膜和舌下微循环存在差异。图像采集时间无差异(腹膜2:34分钟[95%CI 1:49 - 3:19] vs.舌下2:38[95%CI 1:37 - 3:32];p = 0.916)。

结论

腹膜微循环的特征是毛细血管密度低且血管结构独特。腹膜微循环评估的可能性为腹膜(病理)生理学及相关疾病的(监测或检测)研究带来了希望。

相似文献

1
Intraoperative Incident Dark Field Imaging of the Human Peritoneal Microcirculation.
J Vasc Res. 2018;55(3):136-143. doi: 10.1159/000488392. Epub 2018 May 18.
2
Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery.
Colorectal Dis. 2016 Mar;18(3):O103-10. doi: 10.1111/codi.13250.
3
Noninvasive, in vivo assessment of the cervical microcirculation using incident dark field imaging.
Microvasc Res. 2021 May;135:104145. doi: 10.1016/j.mvr.2021.104145. Epub 2021 Feb 9.
4
Ability and efficiency of an automatic analysis software to measure microvascular parameters.
J Clin Monit Comput. 2017 Aug;31(4):669-676. doi: 10.1007/s10877-016-9928-3. Epub 2016 Sep 1.
10
Assessment of microcirculatory perfusion in healthy anesthetized cats undergoing ovariohysterectomy using sidestream dark field microscopy.
J Vet Emerg Crit Care (San Antonio). 2015 May-Jun;25(3):349-57. doi: 10.1111/vec.12296. Epub 2015 Mar 4.

引用本文的文献

1
Placenta accreta spectrum.
Nat Rev Dis Primers. 2025 Jun 5;11(1):40. doi: 10.1038/s41572-025-00624-3.
3
Identifying a sublingual triangle as the ideal site for assessment of sublingual microcirculation.
J Clin Monit Comput. 2023 Apr;37(2):639-649. doi: 10.1007/s10877-022-00936-9. Epub 2022 Nov 10.
4
Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia.
Diagnostics (Basel). 2021 Apr 15;11(4):705. doi: 10.3390/diagnostics11040705.
5
Poor perfusion of the microvasculature in peritoneal metastases of ovarian cancer.
Clin Exp Metastasis. 2020 Apr;37(2):293-304. doi: 10.1007/s10585-020-10024-4. Epub 2020 Feb 1.
6
Microcirculation: Physiology, Pathophysiology, and Clinical Application.
Blood Purif. 2020;49(1-2):143-150. doi: 10.1159/000503775. Epub 2019 Dec 18.

本文引用的文献

1
Functional vascular anatomy of the peritoneum in health and disease.
Pleura Peritoneum. 2016 Sep 1;1(3):145-158. doi: 10.1515/pp-2016-0015. Epub 2016 Oct 4.
2
Monitoring microcirculation.
Best Pract Res Clin Anaesthesiol. 2016 Dec;30(4):407-418. doi: 10.1016/j.bpa.2016.10.008. Epub 2016 Nov 3.
3
The histophysiology and pathophysiology of the peritoneum.
Tissue Cell. 2017 Feb;49(1):95-105. doi: 10.1016/j.tice.2016.11.004. Epub 2016 Nov 13.
5
Microsurgical principles and postoperative adhesions: lessons from the past.
Fertil Steril. 2016 Oct;106(5):1025-1031. doi: 10.1016/j.fertnstert.2016.08.040.
6
Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum.
World J Gastroenterol. 2016 Sep 14;22(34):7692-707. doi: 10.3748/wjg.v22.i34.7692.
7
Role of the peritoneal cavity in the prevention of postoperative adhesions, pain, and fatigue.
Fertil Steril. 2016 Oct;106(5):998-1010. doi: 10.1016/j.fertnstert.2016.08.012. Epub 2016 Aug 11.
8
Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery.
Colorectal Dis. 2016 Mar;18(3):O103-10. doi: 10.1111/codi.13250.
10
Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation.
Intensive Care Med Exp. 2015 Dec;3(1):40. doi: 10.1186/s40635-015-0040-7. Epub 2015 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验