Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Computer Aided Medical Procedures (CAMP), Technische Universität München, Munich, Germany.
Int J Comput Assist Radiol Surg. 2018 Aug;13(8):1221-1231. doi: 10.1007/s11548-018-1779-6. Epub 2018 May 19.
Fusion of preoperative data with intraoperative X-ray images has proven the potential to reduce radiation exposure and contrast agent, especially for complex endovascular aortic repair (EVAR). Due to patient movement and introduced devices that deform the vasculature, the fusion can become inaccurate. This is usually detected by comparing the preoperative information with the contrasted vessel. To avoid repeated use of iodine, comparison with an implanted stent can be used to adjust the fusion. However, detecting the stent automatically without the use of contrast is challenging as only thin stent wires are visible.
We propose a fast, learning-based method to segment aortic stents in single uncontrasted X-ray images. To this end, we employ a fully convolutional network with residual units. Additionally, we investigate whether incorporation of prior knowledge improves the segmentation.
We use 36 X-ray images acquired during EVAR for training and evaluate the segmentation on 27 additional images. We achieve a Dice coefficient of 0.933 (AUC 0.996) when using X-ray alone, and 0.918 (AUC 0.993) and 0.888 (AUC 0.99) when adding the preoperative model, and information about the expected wire width, respectively.
The proposed method is fully automatic, fast and segments aortic stent grafts in fluoroscopic images with high accuracy. The quality and performance of the segmentation will allow for an intraoperative comparison with the preoperative information to assess the accuracy of the fusion.
将术前数据与术中 X 射线图像融合已被证明具有降低辐射暴露和造影剂剂量的潜力,尤其适用于复杂的血管内主动脉修复(EVAR)。由于患者移动和引入的会使血管变形的设备,融合可能会变得不准确。这通常通过将术前信息与对比血管进行比较来检测。为了避免重复使用碘,还可以使用与植入支架的比较来调整融合。然而,由于只有细的支架线可见,因此在不使用对比的情况下自动检测支架具有挑战性。
我们提出了一种快速的、基于学习的方法来分割单张未对比 X 射线图像中的主动脉支架。为此,我们采用了具有残差单元的全卷积网络。此外,我们还研究了是否可以结合先验知识来改善分割。
我们使用在 EVAR 期间采集的 36 张 X 射线图像进行训练,并在另外 27 张图像上评估分割。当仅使用 X 射线时,我们的分割方法获得了 0.933 的 Dice 系数(AUC 为 0.996),而当分别添加术前模型和有关预期线宽的信息时,分别获得了 0.918(AUC 为 0.993)和 0.888(AUC 为 0.99)的 Dice 系数。
所提出的方法是全自动的,快速的,能够高精度地分割荧光透视图像中的主动脉支架。分割的质量和性能将允许与术前信息进行术中比较,以评估融合的准确性。