Suppr超能文献

长期疗效数据背景下混合模型重复测量分析和非线性随机系数模型的研究。

Investigation of mixed model repeated measures analyses and non-linear random coefficient models in the context of long-term efficacy data.

作者信息

Delafont Bruno, Carroll Kevin, Vilain Claire, Pham Emmanuel

机构信息

Delafont Statistics, Alençon, France.

KJC Statistics Ltd, Bramhall, Cheshire, UK.

出版信息

Pharm Stat. 2018 Sep;17(5):515-526. doi: 10.1002/pst.1868. Epub 2018 May 20.

Abstract

The longitudinal data from 2 published clinical trials in adult subjects with upper limb spasticity (a randomized placebo-controlled study [NCT01313299] and its long-term open-label extension [NCT01313312]) were combined. Their study designs involved repeat intramuscular injections of abobotulinumtoxinA (Dysport®), and efficacy endpoints were collected accordingly. With the objective of characterizing the pattern of response across cycles, Mixed Model Repeated Measures analyses and Non-Linear Random Coefficient (NLRC) analyses were performed and their results compared. The Mixed Model Repeated Measures analyses, commonly used in the context of repeated measures with missing dependent data, did not involve any parametric shape for the curve of changes over time. Based on clinical expectations, the NLRC included a negative exponential function of the number of treatment cycles, with its asymptote and rate included as random coefficients in the model. Our analysis focused on 2 specific efficacy parameters reflecting complementary aspects of efficacy in the study population. A simulation study based on a similar study design was also performed to further assess the performance of each method under different patterns of response over time. This highlighted a gain of precision with the NLRC model, and most importantly the need for its assumptions to be verified to avoid potentially biased estimates. These analyses describe a typical situation and the conditions under which non-linear mixed modeling can provide additional insights on the behavior of efficacy parameters over time. Indeed, the resulting estimates from the negative exponential NLRC can help determine the expected maximal effect and the treatment duration required to reach it.

摘要

合并了两项已发表的针对成年上肢痉挛患者的临床试验(一项随机安慰剂对照研究[NCT01313299]及其长期开放标签扩展研究[NCT01313312])的纵向数据。这些研究设计涉及重复肌肉注射阿泊肉毒素A(Dysport®),并相应收集疗效终点数据。为了描述各周期的反应模式,进行了混合模型重复测量分析和非线性随机系数(NLRC)分析,并比较了它们的结果。混合模型重复测量分析常用于存在缺失相关数据的重复测量情况,不涉及随时间变化曲线的任何参数形状。基于临床预期,NLRC纳入了治疗周期数的负指数函数,其渐近线和速率作为随机系数包含在模型中。我们的分析聚焦于反映研究人群疗效互补方面的两个特定疗效参数。还基于类似的研究设计进行了模拟研究,以进一步评估每种方法在不同时间反应模式下的性能。这突出了NLRC模型在精度方面的优势,最重要的是需要验证其假设以避免潜在的偏差估计。这些分析描述了一种典型情况以及非线性混合建模能够提供关于疗效参数随时间变化行为的更多见解的条件。实际上,负指数NLRC得出的估计值有助于确定预期的最大效果以及达到该效果所需的治疗持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验