Suppr超能文献

通过C2C12肌管测量跨质膜电子传递

Measuring Trans-Plasma Membrane Electron Transport by C2C12 Myotubes.

作者信息

Kelly Shannon C, Eccardt Amanda M, Fisher Jonathan S

机构信息

Department of Biology, Saint Louis University.

Department of Biology, Saint Louis University;

出版信息

J Vis Exp. 2018 May 4(135):57565. doi: 10.3791/57565.

Abstract

Trans-plasma membrane electron transport (tPMET) plays a role in protection of cells from intracellular reductive stress as well as protection from damage by extracellular oxidants. This process of transporting electrons from intracellular reductants to extracellular oxidants is not well defined. Here we present spectrophotometric assays by C2C12 myotubes to monitor tPMET utilizing the extracellular electron acceptors: water-soluble tetrazolium salt-1 (WST-1) and 2,6-dichlorophenolindophenol (DPIP or DCIP). Through reduction of these electron acceptors, we are able to monitor this process in a real-time analysis. With the addition of enzymes such as ascorbate oxidase (AO) and superoxide dismutase (SOD) to the assays, we can determine which portion of tPMET is due to ascorbate export or superoxide production, respectively. While WST-1 was shown to produce stable results with low background, DPIP was able to be re-oxidized after the addition of AO and SOD, which was demonstrated with spectrophotometric analysis. This method demonstrates a real-time, multi-well, quick spectrophotometric assay with advantages over other methods used to monitor tPMET, such as ferricyanide (FeCN) and ferricytochrome c reduction.

摘要

跨质膜电子传递(tPMET)在保护细胞免受细胞内还原应激以及免受细胞外氧化剂损伤方面发挥作用。这个将电子从细胞内还原剂转运到细胞外氧化剂的过程尚未完全明确。在这里,我们展示了C2C12肌管利用细胞外电子受体:水溶性四唑盐-1(WST-1)和2,6-二氯酚靛酚(DPIP或DCIP)进行分光光度法测定以监测tPMET。通过这些电子受体的还原,我们能够在实时分析中监测这个过程。在测定中加入诸如抗坏血酸氧化酶(AO)和超氧化物歧化酶(SOD)等酶后,我们可以分别确定tPMET的哪一部分是由于抗坏血酸输出或超氧化物产生。虽然WST-1显示出具有低背景的稳定结果,但DPIP在加入AO和SOD后能够被重新氧化,这通过分光光度分析得到了证明。该方法展示了一种实时、多孔、快速的分光光度法测定,相对于其他用于监测tPMET的方法具有优势,如铁氰化物(FeCN)和铁细胞色素c还原法。

相似文献

1
Measuring Trans-Plasma Membrane Electron Transport by C2C12 Myotubes.
J Vis Exp. 2018 May 4(135):57565. doi: 10.3791/57565.
2
Trans-Plasma Membrane Electron Transport and Ascorbate Efflux by Skeletal Muscle.
Antioxidants (Basel). 2017 Nov 9;6(4):89. doi: 10.3390/antiox6040089.
3
Glucose-dependent trans-plasma membrane electron transport and p70 phosphorylation in skeletal muscle cells.
Redox Biol. 2019 Oct;27:101075. doi: 10.1016/j.redox.2018.101075. Epub 2018 Dec 12.
4
Ascorbate and plasma membrane electron transport--enzymes vs efflux.
Free Radic Biol Med. 2009 Sep 1;47(5):485-95. doi: 10.1016/j.freeradbiomed.2009.06.003. Epub 2009 Jun 6.
5
Distinct trans-plasma membrane redox pathways reduce cell-impermeable dyes in HeLa cells.
Redox Rep. 2004;9(6):302-6. doi: 10.1179/135100004225006777.
6
Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types.
Biochim Biophys Acta Bioenerg. 2019 Aug 1;1860(8):628-639. doi: 10.1016/j.bbabio.2019.06.012. Epub 2019 Jun 20.
9
CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability.
J Neurochem. 2002 Nov;83(3):655-64. doi: 10.1046/j.1471-4159.2002.01176.x.
10
Disruption of skeletal myocytes initiates superoxide release: contribution of NADPH oxidase.
Shock. 2007 May;27(5):552-8. doi: 10.1097/01.shk.0000245027.39483.e4.

引用本文的文献

1
Glucose-dependent trans-plasma membrane electron transport and p70 phosphorylation in skeletal muscle cells.
Redox Biol. 2019 Oct;27:101075. doi: 10.1016/j.redox.2018.101075. Epub 2018 Dec 12.

本文引用的文献

1
Trans-Plasma Membrane Electron Transport and Ascorbate Efflux by Skeletal Muscle.
Antioxidants (Basel). 2017 Nov 9;6(4):89. doi: 10.3390/antiox6040089.
3
Quercetin-Induced Cell Death in Human Papillary Thyroid Cancer (B-CPAP) Cells.
J Thyroid Res. 2016;2016:9843675. doi: 10.1155/2016/9843675. Epub 2016 Jan 20.
5
Detection of reactive oxygen species derived from the family of NOX NADPH oxidases.
Free Radic Biol Med. 2012 Nov 15;53(10):1903-18. doi: 10.1016/j.freeradbiomed.2012.09.002. Epub 2012 Sep 13.
7
Trans-plasma membrane electron transport in mammals: functional significance in health and disease.
Antioxid Redox Signal. 2011 Jun;14(11):2289-318. doi: 10.1089/ars.2010.3247. Epub 2011 Mar 3.
8
Oxidative stress stimulates skeletal muscle glucose uptake through a phosphatidylinositol 3-kinase-dependent pathway.
Am J Physiol Endocrinol Metab. 2008 May;294(5):E889-97. doi: 10.1152/ajpendo.00150.2007. Epub 2008 Feb 26.
9
Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines.
Biochim Biophys Acta. 2007 Feb;1767(2):170-7. doi: 10.1016/j.bbabio.2006.11.018. Epub 2006 Dec 6.
10
Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction.
Biotechnol Annu Rev. 2005;11:127-52. doi: 10.1016/S1387-2656(05)11004-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验