Berridge M V, Tan A S
Malaghan Institute of Medical Research, Wellington School of Medicine, Wellington South, New Zealand.
Antioxid Redox Signal. 2000 Summer;2(2):231-42. doi: 10.1089/ars.2000.2.2-231.
The high capacity of proliferating mammalian cells to transfer electrons from cytosolic NADH to extracellular electron acceptors like oxygen is poorly understood and not widely recognized. Nevertheless, trans-plasma membrane electron transport (plasma membrane redox control) probably ranks alongside the Na+/H+ antiport system (pH control) and glucose transport in facilitating cellular responses to physiological stimuli. These plasma membrane transport systems are acutely responsive to receptor ligation by growth factors, polypeptide hormones, and other cell activators. A novel tetrazolium-based cell proliferation assay that we have shown to measure an NADH-oxidoreductase component of the trans-plasma membrane electron transport system has allowed direct comparisons with NADH:ferricyanide-oxidoreductase and respiratory burst NADPH-oxidoreductase. In addition, an NAD(P)H-oxidase at the cell surface and an NADH-oxidase activity in body fluids can be measured by modifying the basic cell proliferation assay. As determined by reduction of the cell-impermeable tetrazolium reagent, WST-1, electron transfer across the plasma membrane of dividing cells can exceed that of fully activated human peripheral blood neutrophils. Cellular reduction of WST-1 is dependent on the presence of an intermediate electron acceptor and is inhibited by superoxide dismutase (SOD) and by oxygen, implying indirect involvement of superoxide in WST-1 reduction. Cell-surface NAD(P)H-oxidase and serum NADH-oxidase are shown to be distinct from trans-plasma membrane NADH-oxidoreductase by their differential sensitivity to capsaicin and pCMBS. The glycolytic metabolism of cancer cells may be linked to changes in trans-plasma membrane NADH:WST-1-oxidoreductase activity and to increased serum NADH-oxidase in cancer.
增殖的哺乳动物细胞将电子从胞质NADH转移到细胞外电子受体(如氧气)的高能力,目前了解甚少,也未得到广泛认可。然而,跨质膜电子传递(质膜氧化还原控制)可能与Na⁺/H⁺反向转运系统(pH控制)和葡萄糖转运一样,在促进细胞对生理刺激的反应中发挥作用。这些质膜转运系统对生长因子、多肽激素和其他细胞激活剂的受体连接反应敏锐。我们已证明一种基于四唑盐的新型细胞增殖测定法可测量跨质膜电子传递系统的NADH氧化还原酶成分,从而能够与NADH:铁氰化物氧化还原酶和呼吸爆发NADPH氧化还原酶进行直接比较。此外,通过修改基本的细胞增殖测定法,可以测量细胞表面的NAD(P)H氧化酶和体液中的NADH氧化酶活性。通过不可渗透细胞的四唑盐试剂WST-1的还原测定,发现分裂细胞跨质膜的电子传递可超过完全激活的人外周血中性粒细胞。WST-1的细胞还原依赖于中间电子受体的存在,并受到超氧化物歧化酶(SOD)和氧气的抑制,这意味着超氧化物间接参与了WST-1的还原。细胞表面的NAD(P)H氧化酶和血清NADH氧化酶对辣椒素和对氯汞苯甲酸的敏感性不同,表明它们与跨质膜NADH氧化还原酶不同。癌细胞的糖酵解代谢可能与跨质膜NADH:WST-1氧化还原酶活性的变化以及癌症患者血清NADH氧化酶的增加有关。