Suppr超能文献

基于基因组学与临床病理特征的列线图可改善结直肠癌的预后预测。

Nomogram Integrating Genomics with Clinicopathologic Features Improves Prognosis Prediction for Colorectal Cancer.

机构信息

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

出版信息

Mol Cancer Res. 2018 Sep;16(9):1373-1384. doi: 10.1158/1541-7786.MCR-18-0063. Epub 2018 May 21.

Abstract

The current tumor staging system is insufficient for predicting the outcomes for patients with colorectal cancer because of its phenotypic and genomic heterogeneity. Integrating gene expression signatures with clinicopathologic factors may yield a predictive accuracy exceeding that of the currently available system. Twenty-seven signatures that used gene expression data to predict colorectal cancer prognosis were identified and re-analyzed using bioinformatic methods. Next, clinically annotated colorectal cancer samples ( = 1710) with the corresponding expression profiles, that predicted a patient's probability of cancer recurrence, were pooled to evaluate their prognostic values and establish a clinicopathologic-genomic nomogram. Only 2 of the 27 signatures evaluated showed a significant association with prognosis and provided a reasonable prediction accuracy in the pooled cohort (HR, 2.46; 95% CI, 1.183-5.132, < 0.001; AUC, 60.83; HR, 2.33; 95% CI, 1.218-4.453, < 0.001; AUC, 71.34). By integrating the above signatures with prognostic clinicopathologic features, a clinicopathologic-genomic nomogram was cautiously constructed. The nomogram successfully stratified colorectal cancer patients into three risk groups with remarkably different DFS rates and further stratified stage II and III patients into distinct risk subgroups. Importantly, among patients receiving chemotherapy, the nomogram determined that those in the intermediate- (HR, 0.98; 95% CI, 0.255-0.679, < 0.001) and high-risk (HR, 0.67; 95% CI, 0.469-0.957, = 0.028) groups had favorable responses. These findings offer evidence that genomic data provide independent and complementary prognostic information, and incorporation of this information refines the prognosis of colorectal cancer. .

摘要

目前的肿瘤分期系统对于预测结直肠癌患者的预后效果不足,因为其具有表型和基因组异质性。将基因表达谱与临床病理因素相结合,可能会产生超过现有系统的预测准确性。使用基因表达数据预测结直肠癌预后的 27 个特征被确定,并使用生物信息学方法重新进行了分析。接下来,汇集了具有相应表达谱的临床注释结直肠癌样本(=1710),这些样本预测了患者癌症复发的可能性,以评估其预后价值并建立临床病理基因组列线图。在评估的 27 个特征中,只有 2 个与预后相关,并在汇集队列中提供了合理的预测准确性(HR,2.46;95%CI,1.183-5.132,<0.001;AUC,60.83;HR,2.33;95%CI,1.218-4.453,<0.001;AUC,71.34)。通过将上述特征与预后临床病理特征相结合,谨慎构建了临床病理基因组列线图。该列线图成功地将结直肠癌患者分为三个风险组,这些组具有明显不同的DFS 率,并进一步将 II 期和 III 期患者分为不同的风险亚组。重要的是,在接受化疗的患者中,该列线图确定中间风险(HR,0.98;95%CI,0.255-0.679,<0.001)和高风险(HR,0.67;95%CI,0.469-0.957,=0.028)患者组有良好的反应。这些发现提供了证据表明基因组数据提供了独立和补充的预后信息,并且纳入这些信息可以改善结直肠癌的预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验