Suppr超能文献

量化精神病理学中一般因素的强度:比较 CFA 与最大似然估计、BSEM 和 ESEM/EFA 双因子方法。

Quantifying the Strength of General Factors in Psychopathology: A Comparison of CFA with Maximum Likelihood Estimation, BSEM, and ESEM/EFA Bifactor Approaches.

机构信息

Violence Research Centre, Institute of Criminology, University of Cambridge, Cambridge, UK.

Department of Psychology, University of Edinburgh, Edinburgh, UK.

出版信息

J Pers Assess. 2019 Nov-Dec;101(6):631-643. doi: 10.1080/00223891.2018.1468338. Epub 2018 May 22.

Abstract

Whether or not importance should be placed on an all-encompassing general factor of psychopathology (or factor) in classifying, researching, diagnosing, and treating psychiatric disorders depends (among other issues) on the extent to which comorbidity is symptom-general rather than staying largely within the confines of narrower transdiagnostic factors such as internalizing and externalizing. In this study, we compared three methods of estimating factor strength. We compared omega hierarchical and explained common variance calculated from confirmatory factor analysis (CFA) bifactor models with maximum likelihood (ML) estimation, from exploratory structural equation modeling/exploratory factor analysis models with a bifactor rotation, and from Bayesian structural equation modeling (BSEM) bifactor models. Our simulation results suggested that BSEM with small variance priors on secondary loadings might be the preferred option. However, CFA with ML also performed well provided secondary loadings were modeled. We provide two empirical examples of applying the three methodologies using a normative sample of youth (z-proso, = 1,286) and a university counseling sample ( = 359).

摘要

是否应该在分类、研究、诊断和治疗精神障碍时重视精神病理学的全面一般因素(或因素),这取决于共病是否是症状普遍性的,而不是主要局限于内化和外化等更窄的跨诊断因素范围内。在这项研究中,我们比较了三种估计因素强度的方法。我们比较了 ω 层次和从验证性因子分析(CFA)双因素模型中计算出的解释共同方差,这些模型使用最大似然(ML)估计,从探索性结构方程建模/探索性因子分析模型中使用双因素旋转,以及从贝叶斯结构方程建模(BSEM)双因素模型中。我们的模拟结果表明,对于次要加载的小方差先验的 BSEM 可能是首选。然而,只要对次要加载进行建模,使用 ML 的 CFA 也能很好地执行。我们提供了两个使用青年常模样本(z-proso,= 1,286)和大学咨询样本(= 359)的实证示例,应用了这三种方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验