Suppr超能文献

医院焦虑和抑郁量表的因子分析:贝叶斯结构方程建模方法。

Factor analyses of the Hospital Anxiety and Depression Scale: a Bayesian structural equation modeling approach.

机构信息

Centre on Behavioral Health, The University of Hong Kong, 2/F, The Hong Kong Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong,

出版信息

Qual Life Res. 2013 Dec;22(10):2857-63. doi: 10.1007/s11136-013-0429-2. Epub 2013 May 14.

Abstract

PURPOSE

The latent structure of the Hospital Anxiety and Depression Scale (HADS) has caused inconsistent results in the literature. The HADS is frequently analyzed via maximum likelihood confirmatory factor analysis (ML-CFA). However, the overly restrictive assumption of exact zero cross-loadings and residual correlations in ML-CFA can lead to poor model fits and distorted factor structures. This study applied Bayesian structural equation modeling (BSEM) to evaluate the latent structure of the HADS.

METHODS

Three a priori models, the two-factor, three-factor, and bifactor models, were investigated in a Chinese community sample (N = 312) and clinical sample (N = 198) using ML-CFA and BSEM. BSEM specified approximate zero cross-loadings and residual correlations through the use of zero-mean, small-variance informative priors. The model comparison was based on the Bayesian information criterion (BIC).

RESULTS

Using ML-CFA, none of the three models provided an adequate fit for either sample. The BSEM two-factor model with approximate zero cross-loadings and residual correlations fitted both samples well with the lowest BIC of the three models and displayed a simple and parsimonious factor-loading pattern.

CONCLUSIONS

The study demonstrated that the two-factor structure fitted the HADS well, suggesting its usefulness in assessing the symptoms of anxiety and depression in clinical practice. BSEM is a sophisticated and flexible statistical technique that better reflects substantive theories and locates the source of model misfit. Future use of BSEM is recommended to evaluate the latent structure of other psychological instruments.

摘要

目的

医院焦虑抑郁量表(HADS)的潜在结构在文献中导致了不一致的结果。HADS 经常通过最大似然验证性因素分析(ML-CFA)进行分析。然而,ML-CFA 中严格的精确零交叉载荷和残差相关的假设可能导致较差的模型拟合和扭曲的因子结构。本研究应用贝叶斯结构方程模型(BSEM)来评估 HADS 的潜在结构。

方法

在一个中国社区样本(N=312)和临床样本(N=198)中,使用 ML-CFA 和 BSEM 研究了三个先验模型,即双因素、三因素和双因子模型。BSEM 通过使用零均值、小方差信息先验来指定近似零交叉载荷和残差相关。模型比较基于贝叶斯信息准则(BIC)。

结果

使用 ML-CFA,三个模型在两个样本中都没有提供一个合适的拟合。具有近似零交叉载荷和残差相关的 BSEM 双因素模型对两个样本都拟合得很好,三个模型中 BIC 最低,显示出简单而简约的因子载荷模式。

结论

该研究表明,双因素结构很好地拟合了 HADS,提示其在临床实践中评估焦虑和抑郁症状的有用性。BSEM 是一种复杂而灵活的统计技术,它更好地反映了实质性理论,并找到了模型不拟合的根源。建议未来使用 BSEM 来评估其他心理工具的潜在结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验