Suppr超能文献

统计学习通过传递关系创建新的物体关联。

Statistical Learning Creates Novel Object Associations via Transitive Relations.

机构信息

1 Department of Psychology, The University of British Columbia.

2 Institute for Resources, Environment and Sustainability, The University of British Columbia.

出版信息

Psychol Sci. 2018 Aug;29(8):1207-1220. doi: 10.1177/0956797618762400. Epub 2018 May 22.

Abstract

A remarkable ability of the cognitive system is to make novel inferences on the basis of prior experiences. What mechanism supports such inferences? We propose that statistical learning is a process through which transitive inferences of new associations are made between objects that have never been directly associated. After viewing a continuous sequence containing two base pairs (e.g., A-B, B-C), participants automatically inferred a transitive pair (e.g., A-C) where the two objects had never co-occurred before (Experiment 1). This transitive inference occurred in the absence of explicit awareness of the base pairs. However, participants failed to infer the transitive pair from three base pairs (Experiment 2), showing the limits of the transitive inference (Experiment 3). We further demonstrated that this transitive inference can operate across the categorical hierarchy (Experiments 4-7). The findings revealed a novel consequence of statistical learning in which new transitive associations between objects are implicitly inferred.

摘要

认知系统的一个显著能力是能够根据先前的经验进行新颖的推断。那么,支持这种推断的机制是什么呢?我们提出,统计学习是一种过程,通过该过程,可以在从未直接关联过的对象之间建立新的关联的传递性推断。在观看了包含两个碱基对的连续序列(例如,A-B、B-C)之后,参与者会自动推断出从未同时出现过的两个对象之间的传递性对(例如,A-C)(实验 1)。这种传递性推断是在没有明确意识到碱基对的情况下发生的。然而,参与者无法从三个碱基对中推断出传递性对(实验 2),这表明了传递性推断的局限性(实验 3)。我们进一步证明了这种传递性推断可以在类别层次结构上进行(实验 4-7)。这些发现揭示了统计学习的一个新结果,即在对象之间隐含地推断出新的传递性关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验