School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
Angew Chem Int Ed Engl. 2018 Aug 13;57(33):10600-10604. doi: 10.1002/anie.201805060. Epub 2018 Jun 28.
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse family of plant secondary metabolites, which have been exploited to develop analgesics, antibiotics, antitumor agents, and other therapeutic agents. Biosynthesis of BIAs proceeds via a common pathway from tyrosine to (S)-reticulene at which point the pathway diverges. Coclaurine N-methyltransferase (CNMT) is a key enzyme in the pathway to (S)-reticulene, installing the N-methyl substituent that is essential for the bioactivity of many BIAs. In this paper, we describe the first crystal structure of CNMT which, along with mutagenesis studies, defines the enzymes active site architecture. The specificity of CNMT was also explored with a range of natural and synthetic substrates as well as co-factor analogues. Knowledge from this study could be used to generate improved CNMT variants required to produce BIAs or synthetic derivatives.
苄基异喹啉生物碱(BIAs)是一类结构多样的植物次生代谢产物,已被开发用于制造镇痛药、抗生素、抗肿瘤剂和其他治疗剂。BIAs 的生物合成通过酪氨酸到(S)-网状物的共同途径进行,此时途径发生分歧。Coclaurine N-甲基转移酶(CNMT)是(S)-网状物途径中的关键酶,它引入了 N-甲基取代基,这对于许多 BIAs 的生物活性是必不可少的。在本文中,我们描述了 CNMT 的第一个晶体结构,结合突变研究,定义了酶的活性位点结构。还研究了 CNMT 的特异性,包括一系列天然和合成的底物以及辅酶类似物。该研究的知识可用于生成产生 BIAs 或合成衍生物所需的改良 CNMT 变体。