Suppr超能文献

ChEMBL 数据的微扰理论/机器学习模型用于多巴胺靶点:新型 l-脯氨酰-l-亮氨酰-甘氨酰胺类肽类似物的对接、合成和测定。

Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics.

机构信息

Department of Organic Chemistry , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain.

CIMUS , University of Santiago de Compostela , 15782 Santiago de Compostela , Spain.

出版信息

ACS Chem Neurosci. 2018 Nov 21;9(11):2572-2587. doi: 10.1021/acschemneuro.8b00083. Epub 2018 Jun 25.

Abstract

Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC, EC, K, etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.

摘要

预测涉及多巴胺途径的靶蛋白的药物-蛋白相互作用(DPIs)是药物化学中的一个非常重要的目标。我们可以使用分子对接或机器学习(ML)模型来解决一个特定蛋白的问题。不幸的是,这些模型无法解释公共数据库中报告的大型和复杂的临床前测定大数据集。这包括多种测定条件,例如不同的实验参数、生物测定、靶蛋白、细胞系、靶蛋白的生物体或测定的生物体。另一方面,扰动理论(PT)模型允许我们根据以前已知的参考案例,在具有多个边界条件的实验测定中预测查询化合物或分子系统的性质。在这项工作中,我们报告了第一个针对多巴胺途径蛋白靶标化合物的大型 ChEMBL 临床前测定数据集的 PTML(PT+ML)研究。发现的最佳 PTML 模型在训练和外部验证系列中以 70-91%的准确率预测了 50000 个案例。我们还比较了线性 PTML 模型与使用多种非线性方法(人工神经网络(ANN)、随机森林、深度学习等)训练的替代 PTML 模型。一些非线性方法优于线性模型,但代价是模型的复杂性显著增加。我们通过一个理论-实验研究的概念验证实例说明了新模型的实际用途。我们首次报道了一系列新的 l-脯氨酰-l-亮氨酰-甘氨酰胺(PLG)肽模拟化合物的有机合成、化学表征和药理学测定。此外,我们使用软件 Vina AutoDock 对其中一些化合物进行了分子对接研究。该工作以对新化合物在大量测定中的结果进行的 PTML 模型预测研究结束。因此,这项研究为在新测定中预测任何化合物的结果提供了一种新的计算方法。该 PTML 方法侧重于使用简单的线性模型预测涉及不同细胞系、靶蛋白的生物体或测定的生物体的测定中化合物的多个药理参数(IC、EC、K 等)的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验