Suppr超能文献

用于癌症联合治疗的药物-维生素纳米颗粒释放系统设计中纳米颗粒、抗癌药物和维生素选择的 PTML 模型。

PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy.

机构信息

Department of Chemical and Biomolecular Engineering, Tulane University, 6823 St Charles Avenue, New Orleans, Louisiana 70118, United States.

University of Deusto, Avda. Universidades, 24, 48007 Bilbao, Spain.

出版信息

Mol Pharm. 2020 Jul 6;17(7):2612-2627. doi: 10.1021/acs.molpharmaceut.0c00308. Epub 2020 Jun 8.

Abstract

Nanosystems are gaining momentum in pharmaceutical sciences because of the wide variety of possibilities for designing these systems to have specific functions. Specifically, studies of new cancer cotherapy drug-vitamin release nanosystems (DVRNs) including anticancer compounds and vitamins or vitamin derivatives have revealed encouraging results. However, the number of possible combinations of design and synthesis conditions is remarkably high. In addition, a large number of anticancer and vitamin derivatives have been already assayed, but a notably less number of cases of DVRNs were assayed as a whole (with the anticancer compound and the vitamin linked to them). Our approach combines with the perturbation theory and machine learning (PTML) model to predict the probability of obtaining an interesting DVRN by changing the anticancer compound and/or the vitamin present in a DVRN that is already tested for other anticancer compounds or vitamins that have not been tested yet as part of a DVRN. In a previous work, we built a linear PTML model useful for the design of these nanosystems. In doing so, we used information fusion (IF) techniques to carry out data enrichment of DVRN data compiled from the literature with the data for preclinical assays of vitamins from the ChEMBL database. The design features of DVRNs and the assay conditions of nanoparticles (NPs) and vitamins were included as multiplicative PT operators (PTOs) to the system, which indicates the importance of these variables. However, the previous work omitted experiments with nonlinear ML techniques and different types of PTOs such as metric-based PTOs. More importantly, the previous work does not consider the structure of the anticancer drug to be included in the new DVRNs. In this work, we are going to accomplish three main objectives (tasks). In the first task, we found a new model, alternative to the one published before, for the rational design of DVRNs using metric-based PTOs. The most accurate PTML model was the artificial neural network model, which showed values of specificity, sensitivity, and accuracy in the range of 90-95% in training and external validation series for more than 130,000 cases (DVRNs vs ChEMBL assays). Furthermore, in the second task, we used IF techniques to carry out data enrichment of our previous data set. In doing so, we constructed a new working data set of >970,000 cases with the data of preclinical assays of DVRNs, vitamins, and anticancer compounds from the ChEMBL database. All these assays have multiple continuous variables or descriptors and categorical variables (conditions of the assays) for drugs (, ), vitamins (, ), and NPs (, ). These data include >20,000 potential anticancer compounds with >270 protein targets (), >580 assay cell organisms (), and so forth. Furthermore, we include >36,000 assay vitamin derivatives in >6200 types of cells (), >120 assay organisms (), >60 assay strains (), and so forth. The enriched data set also contains >20 types of DVRNs () with 9 NP core materials (), 8 synthesis methods (), and so forth. We expressed all this information with PTOs and developed a qualitatively new PTML model that incorporates information of the anticancer drugs. This new model presents 96-97% of accuracy for training and external validation subsets. In the last task, we carried out a comparative study of ML and/or PTML models published and described how the models we are presenting cover the gap of knowledge in terms of drug delivery. In conclusion, we present here for the first time a multipurpose PTML model that is able to select NPs, anticancer compounds, and vitamins and their conditions of assay for DVRN design.

摘要

纳米系统在制药科学中越来越受到重视,因为设计这些系统具有特定功能的可能性非常广泛。特别是,包括抗癌化合物和维生素或维生素衍生物在内的新型癌症联合治疗药物-维生素释放纳米系统(DVRN)的研究已经取得了令人鼓舞的结果。然而,设计和合成条件的可能组合数量非常多。此外,已经测试了大量的抗癌和维生素衍生物,但作为一个整体,测试的 DVRN 数量明显较少(与它们相连的抗癌化合物和维生素)。我们的方法结合了摄动理论和机器学习(PTML)模型,通过改变已经测试过的 DVRN 中的抗癌化合物和/或维生素,来预测获得有趣的 DVRN 的概率,这些 DVRN 是为尚未测试过的其他抗癌化合物或维生素设计的。在之前的工作中,我们构建了一个线性 PTML 模型,用于设计这些纳米系统。在这样做的过程中,我们使用信息融合(IF)技术对文献中编译的 DVRN 数据与 ChEMBL 数据库中维生素的临床前检测数据进行了数据丰富。DVRN 的设计特征和纳米粒子(NP)和维生素的检测条件被包括在系统的乘法 PT 算子(PTO)中,这表明了这些变量的重要性。然而,之前的工作忽略了使用非线性 ML 技术和不同类型的 PTO 进行实验,例如基于度量的 PTO。更重要的是,之前的工作没有考虑要包含在新 DVRN 中的抗癌药物的结构。在这项工作中,我们将完成三个主要目标(任务)。在第一个任务中,我们找到了一个新的模型,该模型替代了以前发布的模型,用于使用基于度量的 PTO 进行 DVRN 的合理设计。最准确的 PTML 模型是人工神经网络模型,它在训练和外部验证系列中对超过 130,000 个案例(DVRN 与 ChEMBL 检测)的特异性、敏感性和准确性显示出 90-95%的范围值。此外,在第二个任务中,我们使用 IF 技术对我们之前的数据集进行了数据丰富。在这样做的过程中,我们构建了一个新的工作数据集,其中包含来自 ChEMBL 数据库的 DVRN、维生素和抗癌化合物的临床前检测数据,超过 97 万例。所有这些检测都有多个连续变量或描述符和分类变量(药物的检测条件),包括(,),维生素(,)和 NPs(,)。这些数据包括超过 20,000 种潜在的抗癌化合物,超过 270 种蛋白质靶标(),超过 580 种检测细胞生物体(),等等。此外,我们包括超过 36,000 种检测维生素衍生物,超过 6200 种类型的细胞(),超过 120 种检测生物体(),超过 60 种检测菌株(),等等。丰富的数据集中还包含超过 20 种 DVRN(),其中有 9 种 NP 核心材料(),8 种合成方法(),等等。我们用 PTO 表示所有这些信息,并开发了一个定性的新 PTML 模型,该模型包含了抗癌药物的信息。这个新模型在训练和外部验证子集中的准确率为 96-97%。在最后一个任务中,我们对已发表的 ML 和/或 PTML 模型进行了比较研究,并描述了我们提出的模型如何在药物输送方面填补知识空白。总之,我们在这里首次提出了一个多用途的 PTML 模型,该模型能够为 DVRN 设计选择 NP、抗癌化合物和维生素及其检测条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验