Suppr超能文献

基于 2-糠酰基的 MIF-1 肽模拟物的合成、药理学和生物学评价以及用于变构调节剂(ALLOPTML)的通用模型的开发。

Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML).

机构信息

LAQV/REQUIMTE, Dept. of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.

Dept. of Organic Chemistry II, University of Basque Country (UPV-EHU), 48940 Leioa, Spain.

出版信息

ACS Chem Neurosci. 2021 Jan 6;12(1):203-215. doi: 10.1021/acschemneuro.0c00687. Epub 2020 Dec 21.

Abstract

This work describes the synthesis and pharmacological evaluation of 2-furoyl-based Melanostatin (MIF-1) peptidomimetics as dopamine D modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated -propylapomorphine ([H]-NPA) at D receptors (DR). In this series, 2-furoyl-l-leucylglycinamide () produced a statistically significant increase in the maximal [H]-NPA response at 10 pM (11 ± 1%), comparable to the effect of MIF-1 (18 ± 9%) at the same concentration. This result supports previous evidence that the replacement of proline residue by heteroaromatic scaffolds are tolerated at the allosteric binding site of MIF-1. Biological assays performed for peptidomimetic using cortex neurons from 19-day-old Wistar-Kyoto rat embryos suggest that displays no neurotoxicity up to 100 μM. Overall, the pharmacological and toxicological profile and the structural simplicity of makes this peptidomimetic a potential lead compound for further development and optimization, paving the way for the development of novel modulating agents of DR suitable for the treatment of CNS-related diseases. Additionally, the pharmacological and biological data herein reported, along with >20 000 outcomes of preclinical assays, was used to seek a general model to predict the allosteric modulatory potential of molecular candidates for a myriad of target receptors, organisms, cell lines, and biological activity parameters based on perturbation theory (PT) ideas and machine learning (ML) techniques, abbreviated as ALLOPTML. By doing so, ALLOPTML shows high specificity Sp = 89.2/89.4%, sensitivity Sn = 71.3/72.2%, and accuracy Ac = 86.1%/86.4% in training/validation series, respectively. To the best of our knowledge, ALLOPTML is the first general-purpose chemoinformatic tool using a PTML-based model for the multioutput and multicondition prediction of allosteric compounds, which is expected to save both time and resources during the early drug discovery of allosteric modulators.

摘要

这项工作描述了基于 2-糠酰基的黑色素紧张素(MIF-1)肽模拟物作为多巴胺 D 调节剂的合成和药理学评价。八种新型肽模拟物被测试其增强放射性标记的 -丙基阿朴吗啡 ([H]-NPA) 在 D 受体 (DR) 上最大效应的能力。在该系列中,2-糠酰基-l-亮氨酰甘氨酸酰胺 () 在 10 pM 时产生了统计学上显著增加 [H]-NPA 反应的最大效应(11 ± 1%),与相同浓度的 MIF-1(18 ± 9%)的作用相当。这一结果支持了先前的证据,即脯氨酸残基被杂芳环支架替代在 MIF-1 的变构结合位点是可以容忍的。使用来自 19 天大的 Wistar-Kyoto 大鼠胚胎的皮质神经元进行的肽模拟物 生物学测定表明,在高达 100 μM 的浓度下, 没有显示出神经毒性。总的来说, 的药理学和毒理学特征以及结构简单性使其成为进一步开发和优化的潜在先导化合物,为开发适合治疗中枢神经系统相关疾病的 DR 新型调节剂铺平了道路。此外,本文报道的药理学和生物学数据以及 >20000 项临床前检测结果,被用于寻求一种基于扰动理论 (PT) 思想和机器学习 (ML) 技术的通用模型,以预测分子候选物对各种靶受体、生物体、细胞系和生物学活性参数的变构调节潜力,简称为 ALLOPTML。通过这样做,ALLOPTML 在训练/验证系列中分别显示出 89.2/89.4%、71.3/72.2%和 86.1/86.4%的高特异性 Sp、敏感性 Sn 和准确性 Ac。据我们所知,ALLOPTML 是第一个使用基于 PTML 的模型进行变构化合物的多输出和多条件预测的通用化学信息学工具,有望在变构调节剂的早期药物发现过程中节省时间和资源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验