Suppr超能文献

具有交替整流功能的纳米级导电细丝作为人工突触构建模块

Nanoscale Conductive Filament with Alternating Rectification as an Artificial Synapse Building Block.

作者信息

Berco Dan, Zhou Yu, Gollu Sankara Rao, Kalaga Pranav Sairam, Kole Abhisek, Hassan Mohamed, Ang Diing Shenp

机构信息

School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore.

出版信息

ACS Nano. 2018 Jun 26;12(6):5946-5955. doi: 10.1021/acsnano.8b02193. Epub 2018 May 29.

Abstract

A popular approach for resistive memory (RRAM)-based hardware implementation of neural networks utilizes one (or two) device that functions as an analog synapse in a crossbar structure of perpendicular pre- and postsynaptic neurons. An ideal fully automated, large-scale artificial neural network, which matches a biologic counterpart (in terms of density and energy consumption), thus requires nanosized, extremely low power devices with a wide dynamic range and multilevel functionality. Unfortunately the trade-off between these traits proves to be a serious obstacle in the realization of brain-inspired computing platforms yet to be overcome. This study demonstrates an alternative manner for the implementation of artificial synapses in which the local stoichiometry of metal oxide materials is delicately manipulated to form a single nanoscale conductive filament that may be used as a synaptic gap building block in an equivalent manner to the functionality of a single connexon (a signaling pore between synapses) with dynamic rectification direction. The structure, of a few nanometers in size, is based on the formation of defect states and shows current rectification properties that can be consecutively flipped to a forward or reverse direction to create either an excitatory or inhibitory (positive or negative) weight parameter. Alternatively, a plurality of these artificial connexons may be used to create a synthetic rectifying synaptic gap junction. In addition, the junction plasticity may be altered in a differential digital scheme (opposed to conventional analog RRAM conductivity manipulation) by changing the ratio of forward to reverse rectifying connexons.

摘要

一种基于电阻式存储器(RRAM)的神经网络硬件实现方法,是利用一个(或两个)器件在垂直排列的突触前和突触后神经元的交叉阵列结构中充当模拟突触。一个理想的全自动、大规模人工神经网络,要在密度和能耗方面与生物神经网络相匹配,因此需要具有宽动态范围和多级功能的纳米级、极低功耗的器件。不幸的是,这些特性之间的权衡被证明是实现受大脑启发的计算平台的一个严重障碍,有待克服。本研究展示了一种实现人工突触的替代方法,其中精细地操控金属氧化物材料的局部化学计量比,以形成单个纳米级导电细丝,该细丝可以用作突触间隙构建块,其功能等效于具有动态整流方向的单个连接子(突触之间的信号传导孔)。这种尺寸为几纳米的结构基于缺陷态的形成,并表现出电流整流特性,该特性可以连续翻转到正向或反向,以创建兴奋性或抑制性(正或负)权重参数。另外,可以使用多个这些人工连接子来创建合成整流突触间隙连接。此外,通过改变正向与反向整流连接子的比例,可以采用差分数字方案(与传统的模拟RRAM电导率操纵相反)来改变连接可塑性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验