European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany; Department of Mathematics and Computer Science, University of Jena, Ernst-Abbe-Platz 2, Jena 07743, Germany.
Math Biosci. 2018 Sep;303:46-51. doi: 10.1016/j.mbs.2018.03.030. Epub 2018 May 22.
The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. Partial differential equation (PDEs) model as well as linear stability analysis indicate that diffusion play no major role using experimental high diffusion values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division.
在不对称细胞分裂过程中,纺锤体的定向和位置对于染色体分离的保真度至关重要,以产生具有不同大小或命运的子细胞。这个机制在芽殖酵母酿酒酵母中得到了最好的理解,被称为纺锤体位置检查点(SPOC)。SPOC 抑制细胞从有丝分裂中退出,直到纺锤体沿着母细胞-子细胞极性轴正确定向。尽管进行了许多实验研究,但 SPOC 调节的机制仍然难以捉摸,在理论上也没有得到探索。在这里,开发了一个最小的数学模型来描述 SPOC 的激活和沉默,具有自催化反馈环。非线性常微分方程(ODE)模型的数值模拟准确地再现了 SPOC 机制的表型。非线性 ODE 的分叉分析揭示了纺锤体极体的定向依赖性,以及这种依赖性如何通过参数值改变。偏微分方程(PDE)模型和线性稳定性分析表明,使用实验中的高扩散值,扩散没有起到主要作用。这些结果为通过数学建模对纺锤体定向系统的分子组织提供了系统理解。所提出的数学模型易于理解,并且在上述背景下,可以用作进一步开发不对称细胞分裂中定量模型的基础。