Robert T, Vallée P, Tisserand R, Buloup F, Bariatinsky D, Vercher J L, Fitzpatrick R C, Mille M L
Université Claude Bernard Lyon 1, Villeurbanne, France; IFSTTAR, UMR_T9406, LBMC Laboratoire de Biomécanique et Mécanique des Chocs, Bron, France.
Aix Marseille Univ, CNRS, ISM, Marseille 13288, France.
J Biomech. 2018 Jun 25;75:89-95. doi: 10.1016/j.jbiomech.2018.05.010. Epub 2018 May 17.
This study investigated the stepping boundary - the force that can be resisted without stepping - for force-controlled perturbations of different durations. Twenty-two healthy young adults (19-37 years old) were instructed to try not to step in response to 86 different force/time combinations of forward waist-pulls. The forces at which 50% of subjects stepped (F) were identified for each tested perturbation durations. Results showed that F decreased hyperbolically when the perturbation's duration increased and converged toward a constant value (about 10%BW) for longer perturbations (over 1500 ms). The effect of perturbation duration was critical for the shortest perturbations (less than 1 s). In parallel, a simple function was proposed to estimate this stepping boundary. Considering the dynamics of a linear inverted pendulum + foot model and simple balance recovery reactions, we could express the maximum pulling force that can be withstood without stepping as a simple function of the perturbation duration. When used with values of the main model parameters determined experimentally, this function replicated adequately the experimental results. This study demonstrates for the first time that perturbation duration has a major influence on the outcomes of compliant perturbations such as force-controlled pulls. The stepping boundary corresponds to a constant perturbation force-duration product and is largely explained by only two parameters: the reaction time and the displacement of the center of pressure within the functional base of support. Future work should investigate pathological populations and additional parameters characterizing the perturbation time-profile such as the time derivative of the perturbation.
本研究调查了不同持续时间的力控扰动下的迈步边界——即不迈步就能抵抗的力。22名健康的年轻人(19 - 37岁)被要求在面对86种不同的前向腰部拉力的力/时间组合时尽量不迈步。针对每个测试的扰动持续时间,确定了50%的受试者迈步时的力(F)。结果表明,当扰动持续时间增加时,F呈双曲线下降,对于较长的扰动(超过1500毫秒),F趋向于一个恒定值(约为体重的10%)。扰动持续时间的影响在最短的扰动(小于1秒)时最为关键。同时,提出了一个简单的函数来估计这个迈步边界。考虑到线性倒立摆+足部模型的动力学以及简单的平衡恢复反应,我们可以将不迈步就能承受的最大拉力表示为扰动持续时间的一个简单函数。当与通过实验确定的主要模型参数值一起使用时,这个函数充分再现了实验结果。本研究首次表明,扰动持续时间对诸如力控牵拉等顺应性扰动的结果有重大影响。迈步边界对应于一个恒定的扰动力-持续时间乘积,并且很大程度上仅由两个参数解释:反应时间和功能支撑基底内压力中心的位移。未来的工作应该研究病理人群以及表征扰动时间轮廓的其他参数,如扰动的时间导数。