Suppr超能文献

迁移促进了空间异质正向选择下质粒的稳定性。

Migration promotes plasmid stability under spatially heterogeneous positive selection.

机构信息

P3 Institute, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 1AE, UK

Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK.

出版信息

Proc Biol Sci. 2018 May 30;285(1879). doi: 10.1098/rspb.2018.0324.

Abstract

Bacteria-plasmid associations can be mutualistic or antagonistic depending on the strength of positive selection for plasmid-encoded genes, with contrasting outcomes for plasmid stability. In mutualistic environments, plasmids are swept to high frequency by positive selection, increasing the likelihood of compensatory evolution to ameliorate the plasmid cost, which promotes long-term stability. In antagonistic environments, plasmids are purged by negative selection, reducing the probability of compensatory evolution and driving their extinction. Here we show, using experimental evolution of and the mercury-resistance plasmid, pQBR103, that migration promotes plasmid stability in spatially heterogeneous selection environments. Specifically, migration from mutualistic environments, by increasing both the frequency of the plasmid and the supply of compensatory mutations, stabilized plasmids in antagonistic environments where, without migration, they approached extinction. These data suggest that spatially heterogeneous positive selection, which is common in natural environments, coupled with migration helps to explain the stability of plasmids and the ecologically important genes that they encode.

摘要

细菌-质粒的关联可以是互利共生的,也可以是对抗性的,这取决于质粒编码基因受到正向选择的强度,而质粒的稳定性则会产生截然不同的结果。在互利共生的环境中,质粒受到正向选择的强烈驱动,高频传播,增加了补偿进化的可能性,以减轻质粒的代价,从而促进长期稳定性。在对抗性的环境中,质粒则受到负向选择的清除,降低了补偿进化的可能性,并促使它们灭绝。在这里,我们利用 和汞抗性质粒 pQBR103 的实验进化表明,迁移促进了空间异质选择环境中质粒的稳定性。具体来说,从互利共生环境的迁移,通过增加质粒的频率和补偿突变的供应,稳定了在没有迁移的情况下,处于对抗性环境中接近灭绝的质粒。这些数据表明,在自然环境中很常见的空间异质正向选择,加上迁移有助于解释质粒及其所编码的生态重要基因的稳定性。

相似文献

1
Migration promotes plasmid stability under spatially heterogeneous positive selection.
Proc Biol Sci. 2018 May 30;285(1879). doi: 10.1098/rspb.2018.0324.
2
Plasmid stability is enhanced by higher-frequency pulses of positive selection.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2497.
3
Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum.
Curr Biol. 2015 Aug 3;25(15):2034-9. doi: 10.1016/j.cub.2015.06.024. Epub 2015 Jul 16.
4
Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species.
FEMS Microbiol Ecol. 2018 Jan 1;94(1). doi: 10.1093/femsec/fix172.
5
Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8260-5. doi: 10.1073/pnas.1600974113. Epub 2016 Jul 6.
6
Gene mobility promotes the spread of resistance in bacterial populations.
ISME J. 2017 Aug;11(8):1930-1932. doi: 10.1038/ismej.2017.42. Epub 2017 Mar 31.
10
Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways.
Microbiology (Reading). 2020 Jan;166(1):56-62. doi: 10.1099/mic.0.000862.

引用本文的文献

2
Persisting uropathogenic Escherichia coli lineages show signatures of niche-specific within-host adaptation mediated by mobile genetic elements.
Cell Host Microbe. 2022 Jul 13;30(7):1034-1047.e6. doi: 10.1016/j.chom.2022.04.008. Epub 2022 May 10.
3
Evolutionary mechanisms that determine which bacterial genes are carried on plasmids.
Evol Lett. 2021 May 18;5(3):290-301. doi: 10.1002/evl3.226. eCollection 2021 Jun.
4
The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling.
Comput Struct Biotechnol J. 2020 Dec 29;19:586-599. doi: 10.1016/j.csbj.2020.12.027. eCollection 2021.
5
Plasmid Interactions Can Improve Plasmid Persistence in Bacterial Populations.
Front Microbiol. 2020 Aug 31;11:2033. doi: 10.3389/fmicb.2020.02033. eCollection 2020.

本文引用的文献

1
Plasmid stability is enhanced by higher-frequency pulses of positive selection.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2497.
2
Fitness Costs of Plasmids: a Limit to Plasmid Transmission.
Microbiol Spectr. 2017 Sep;5(5). doi: 10.1128/microbiolspec.MTBP-0016-2017.
3
Adaptive modulation of antibiotic resistance through intragenomic coevolution.
Nat Ecol Evol. 2017 Sep;1(9):1364-1369. doi: 10.1038/s41559-017-0242-3. Epub 2017 Jul 24.
4
Positive selection inhibits gene mobilisation and transfer in soil bacterial communities.
Nat Ecol Evol. 2017 Sep;1(9):1348-1353. doi: 10.1038/s41559-017-0250-3. Epub 2017 Jul 31.
5
Gene mobility promotes the spread of resistance in bacterial populations.
ISME J. 2017 Aug;11(8):1930-1932. doi: 10.1038/ismej.2017.42. Epub 2017 Mar 31.
7
Rapid compensatory evolution promotes the survival of conjugative plasmids.
Mob Genet Elements. 2016 May 4;6(3):e1179074. doi: 10.1080/2159256X.2016.1179074. eCollection 2016 May-Jun.
8
Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts.
Mol Biol Evol. 2016 Nov;33(11):2860-2873. doi: 10.1093/molbev/msw163. Epub 2016 Aug 8.
9
Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8260-5. doi: 10.1073/pnas.1600974113. Epub 2016 Jul 6.
10
Evolved plasmid-host interactions reduce plasmid interference cost.
Mol Microbiol. 2016 Sep;101(5):743-56. doi: 10.1111/mmi.13407. Epub 2016 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验