Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, Palma de Mallorca, Spain.
PLoS One. 2018 May 24;13(5):e0197597. doi: 10.1371/journal.pone.0197597. eCollection 2018.
This work focuses on the experimental data analysis of electroencephalography (EEG) data, in which multiple sensors are recording oscillatory voltage time series. The EEG data analyzed in this manuscript has been acquired using a low-cost commercial headset, the Emotiv EPOC+. Our goal is to compare different techniques for the optimal estimation of collective rhythms from EEG data. To this end, a traditional method such as the principal component analysis (PCA) is compared to more recent approaches to extract a collective rhythm from phase-synchronized data. Here, we extend the work by Schwabedal and Kantz (PRL 116, 104101 (2016)) evaluating the performance of the Kosambi-Hilbert torsion (KHT) method to extract a collective rhythm from multivariate oscillatory time series and compare it to results obtained from PCA. The KHT method takes advantage of the singular value decomposition algorithm and accounts for possible phase lags among different time series and allows to focus the analysis on a specific spectral band, optimally amplifying the signal-to-noise ratio of a common rhythm. We evaluate the performance of these methods for two particular sets of data: EEG data recorded with closed eyes and EEG data recorded while observing a screen flickering at 15 Hz. We found an improvement in the signal-to-noise ratio of the collective signal for the KHT over the PCA, particularly when random temporal shifts are added to the channels.
这项工作侧重于脑电图 (EEG) 数据的实验数据分析,其中多个传感器记录振荡电压时间序列。本文分析的 EEG 数据是使用低成本的商用耳机 Emotiv EPOC+ 采集的。我们的目标是比较从 EEG 数据中最佳估计集体节律的不同技术。为此,将传统方法(如主成分分析 (PCA))与最近的方法进行比较,以从相位同步数据中提取集体节律。在这里,我们扩展了 Schwabedal 和 Kantz (PRL 116, 104101 (2016)) 的工作,评估了从多变量振荡时间序列中提取集体节律的 Kosambi-Hilbert 扭转 (KHT) 方法的性能,并将其与从 PCA 获得的结果进行比较。KHT 方法利用奇异值分解算法,考虑不同时间序列之间可能的相位滞后,并允许将分析集中在特定的频谱带,从而最佳放大共同节律的信噪比。我们评估了这些方法在两组特定数据上的性能:闭眼时记录的 EEG 数据和观察以 15 Hz 闪烁的屏幕时记录的 EEG 数据。我们发现,与 PCA 相比,KHT 方法对集体信号的信噪比有了提高,尤其是在向通道添加随机时间偏移时。