The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL - Campus Biotech, Geneve, Switzerland.
Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA; Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France.
Neuroimage. 2018 Jul 15;175:176-187. doi: 10.1016/j.neuroimage.2018.03.016. Epub 2018 Mar 9.
Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.
独立成分分析 (ICA) 已被证明是一种有效的数据分析方法,可用于分析 EEG 数据,分离出具有时间和功能独立性的脑和非脑源过程的信号,从而提高其清晰度。通过主成分分析 (PCA) 进行降维处理通常被推荐用于 EEG 数据的 ICA 分解之前,以尽量减少所需数据量和计算时间。在这里,我们比较了对 14 个 72 通道单个体 EEG 数据集进行的 ICA 分解,这些数据集分别通过 (i) 应用 PCA 进行初步降维处理,(ii) 不进行降维处理,或者 (iii) 仅应用 PCA。通过 PCA 降低数据秩(即使只去除数据方差的 1%)也会对独立成分(IC)的数量及其在重复分解下的稳定性产生不利影响。例如,分解保留原始数据方差 95%的主成分空间会将每个数据集恢复的“偶极”IC 的平均数量从 30 个减少到 10 个,并将 IC 稳定性中位数从 90%降低到 76%。PCA 秩降低还会减少跨被试的等效 IC 数量。例如,分解保留 95%数据方差的主成分空间会将代表额中线theta 活动的 IC 簇的被试数量从 11 个减少到 5 个。PCA 秩降低还会增加 IC 脑有效源的等效偶极位置和谱的不确定性。这些结果表明,当将 ICA 分解应用于 EEG 数据时,应尽量避免 PCA 秩降低。