Suppr超能文献

通过主成分分析(PCA)对 EEG 数据进行降维会降低其后续独立成分分解(ICA)的质量。

Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition.

机构信息

The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, EPFL - Campus Biotech, Geneve, Switzerland.

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093-0559, USA; Univ. Grenoble Alpes, CNRS, LNPC UMR 5105, Grenoble, France.

出版信息

Neuroimage. 2018 Jul 15;175:176-187. doi: 10.1016/j.neuroimage.2018.03.016. Epub 2018 Mar 9.

Abstract

Independent Component Analysis (ICA) has proven to be an effective data driven method for analyzing EEG data, separating signals from temporally and functionally independent brain and non-brain source processes and thereby increasing their definition. Dimension reduction by Principal Component Analysis (PCA) has often been recommended before ICA decomposition of EEG data, both to minimize the amount of required data and computation time. Here we compared ICA decompositions of fourteen 72-channel single subject EEG data sets obtained (i) after applying preliminary dimension reduction by PCA, (ii) after applying no such dimension reduction, or else (iii) applying PCA only. Reducing the data rank by PCA (even to remove only 1% of data variance) adversely affected both the numbers of dipolar independent components (ICs) and their stability under repeated decomposition. For example, decomposing a principal subspace retaining 95% of original data variance reduced the mean number of recovered 'dipolar' ICs from 30 to 10 per data set and reduced median IC stability from 90% to 76%. PCA rank reduction also decreased the numbers of near-equivalent ICs across subjects. For instance, decomposing a principal subspace retaining 95% of data variance reduced the number of subjects represented in an IC cluster accounting for frontal midline theta activity from 11 to 5. PCA rank reduction also increased uncertainty in the equivalent dipole positions and spectra of the IC brain effective sources. These results suggest that when applying ICA decomposition to EEG data, PCA rank reduction should best be avoided.

摘要

独立成分分析 (ICA) 已被证明是一种有效的数据分析方法,可用于分析 EEG 数据,分离出具有时间和功能独立性的脑和非脑源过程的信号,从而提高其清晰度。通过主成分分析 (PCA) 进行降维处理通常被推荐用于 EEG 数据的 ICA 分解之前,以尽量减少所需数据量和计算时间。在这里,我们比较了对 14 个 72 通道单个体 EEG 数据集进行的 ICA 分解,这些数据集分别通过 (i) 应用 PCA 进行初步降维处理,(ii) 不进行降维处理,或者 (iii) 仅应用 PCA。通过 PCA 降低数据秩(即使只去除数据方差的 1%)也会对独立成分(IC)的数量及其在重复分解下的稳定性产生不利影响。例如,分解保留原始数据方差 95%的主成分空间会将每个数据集恢复的“偶极”IC 的平均数量从 30 个减少到 10 个,并将 IC 稳定性中位数从 90%降低到 76%。PCA 秩降低还会减少跨被试的等效 IC 数量。例如,分解保留 95%数据方差的主成分空间会将代表额中线theta 活动的 IC 簇的被试数量从 11 个减少到 5 个。PCA 秩降低还会增加 IC 脑有效源的等效偶极位置和谱的不确定性。这些结果表明,当将 ICA 分解应用于 EEG 数据时,应尽量避免 PCA 秩降低。

相似文献

3
Independent EEG sources are dipolar.
PLoS One. 2012;7(2):e30135. doi: 10.1371/journal.pone.0030135. Epub 2012 Feb 15.
4
Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging.
Neuroimage. 2014 Feb 15;87:297-310. doi: 10.1016/j.neuroimage.2013.09.045. Epub 2013 Oct 8.
5
Evaluation of PCA and ICA of simulated ERPs: Promax vs. Infomax rotations.
Hum Brain Mapp. 2007 Aug;28(8):742-63. doi: 10.1002/hbm.20304.
6
RELICA: a method for estimating the reliability of independent components.
Neuroimage. 2014 Dec;103:391-400. doi: 10.1016/j.neuroimage.2014.09.010. Epub 2014 Sep 16.
7
Identifying reliable independent components via split-half comparisons.
Neuroimage. 2009 May 1;45(4):1199-211. doi: 10.1016/j.neuroimage.2008.12.038. Epub 2008 Dec 31.
8
Dimensionality reduction for the analysis of brain oscillations.
Neuroimage. 2014 Nov 1;101:583-97. doi: 10.1016/j.neuroimage.2014.06.073. Epub 2014 Jul 6.
9
ICLabel: An automated electroencephalographic independent component classifier, dataset, and website.
Neuroimage. 2019 Sep;198:181-197. doi: 10.1016/j.neuroimage.2019.05.026. Epub 2019 May 16.
10
An algorithm for separation of mixed sparse and Gaussian sources.
PLoS One. 2017 Apr 17;12(4):e0175775. doi: 10.1371/journal.pone.0175775. eCollection 2017.

引用本文的文献

1
Sensory Entrained TMS (seTMS) enhances motor cortex plasticity.
bioRxiv. 2025 Jul 27:2025.07.23.666433. doi: 10.1101/2025.07.23.666433.
2
Sensory Entrained TMS (seTMS) Enhances Motor Cortex Excitability.
Hum Brain Mapp. 2025 Jul;46(10):e70267. doi: 10.1002/hbm.70267.
3
Machine learning for workpiece mass prediction using real and synthetic acoustic data.
Sci Rep. 2025 Jun 4;15(1):19534. doi: 10.1038/s41598-025-03018-3.
4
How does Independent Component Analysis Preprocessing Affect EEG Microstates?
Brain Topogr. 2025 Feb 4;38(2):26. doi: 10.1007/s10548-024-01098-4.
5
Sensory Entrained TMS (seTMS) enhances motor cortex excitability.
bioRxiv. 2024 Nov 27:2024.11.26.625537. doi: 10.1101/2024.11.26.625537.
6
Optimizing EEG Signal Integrity: A Comprehensive Guide to Ocular Artifact Correction.
Bioengineering (Basel). 2024 Oct 12;11(10):1018. doi: 10.3390/bioengineering11101018.
7
Shredding artifacts: extracting brain activity in EEG from extreme artifacts during skateboarding using ASR and ICA.
Front Neuroergon. 2024 Jun 26;5:1358660. doi: 10.3389/fnrgo.2024.1358660. eCollection 2024.
9
Identification of Early Hippocampal Dynamics during Recognition Memory with Independent Component Analysis.
eNeuro. 2024 Apr 3;11(4). doi: 10.1523/ENEURO.0183-23.2023. Print 2024 Apr.
10
Prediction model of land surface settlement deformation based on improved LSTM method: CEEMDAN-ICA-AM-LSTM (CIAL) prediction model.
PLoS One. 2024 Mar 7;19(3):e0298524. doi: 10.1371/journal.pone.0298524. eCollection 2024.

本文引用的文献

2
Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking.
Neuroimage. 2017 Oct 1;159:403-416. doi: 10.1016/j.neuroimage.2017.07.013. Epub 2017 Aug 4.
3
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5. doi: 10.1109/EMBC.2015.7319296.
4
Simultaneous head tissue conductivity and EEG source location estimation.
Neuroimage. 2016 Jan 1;124(Pt A):168-180. doi: 10.1016/j.neuroimage.2015.08.032. Epub 2015 Aug 22.
5
RELICA: a method for estimating the reliability of independent components.
Neuroimage. 2014 Dec;103:391-400. doi: 10.1016/j.neuroimage.2014.09.010. Epub 2014 Sep 16.
6
Selecting the best number of synergies in gait: preliminary results on young and elderly people.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650416. doi: 10.1109/ICORR.2013.6650416.
7
BCILAB: a platform for brain-computer interface development.
J Neural Eng. 2013 Oct;10(5):056014. doi: 10.1088/1741-2560/10/5/056014. Epub 2013 Aug 28.
8
ErpICASSO: a tool for reliability estimates of independent components in EEG event-related analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:368-71. doi: 10.1109/EMBC.2012.6345945.
9
Independent EEG sources are dipolar.
PLoS One. 2012;7(2):e30135. doi: 10.1371/journal.pone.0030135. Epub 2012 Feb 15.
10
Automatic classification of artifactual ICA-components for artifact removal in EEG signals.
Behav Brain Funct. 2011 Aug 2;7:30. doi: 10.1186/1744-9081-7-30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验