Suppr超能文献

用于差异项目功能(DIF)检测的拉施克混合模型:新旧分数规范的比较

Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications.

作者信息

Frick Hannah, Strobl Carolin, Zeileis Achim

机构信息

Universität Innsbruck, Innsbruck, Austria.

Universität Zürich, Zürich, Switzerland.

出版信息

Educ Psychol Meas. 2015 Apr;75(2):208-234. doi: 10.1177/0013164414536183. Epub 2014 Jun 22.

Abstract

Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest differential item functioning (DIF) tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a new score distribution for the Rasch mixture model is introduced here. It ensures the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study, and its application is illustrated in a study of verbal aggression.

摘要

当检验单个Rasch模型的测量不变性假设时,Rasch混合模型可能是一个有用的工具。当DIF组与可用的显性协变量仅有弱相关性时,与显性差异项目功能(DIF)检验相比,它们具有优势。与单个Rasch模型不同,即使使用条件最大似然法,Rasch混合模型的估计对能力分布的设定也很敏感。在一项模拟研究中证明了能力差异如何影响Rasch混合模型的潜在类别。如果目标仅仅是DIF检测,那么揭示这种能力差异并不重要,因为人们只对关于项目难度的潜在组结构感兴趣。为了避免能力差异(或影响)的任何混杂效应,这里引入了一种新的Rasch混合模型分数分布。它确保Rasch混合模型的估计独立于能力分布,从而使混合仅对项目难度中的潜在结构敏感。在一项模拟研究中证明了它的有用性,并在一项言语攻击研究中说明了它的应用。

相似文献

1
Rasch Mixture Models for DIF Detection: A Comparison of Old and New Score Specifications.
Educ Psychol Meas. 2015 Apr;75(2):208-234. doi: 10.1177/0013164414536183. Epub 2014 Jun 22.
3
Detection of differential item functioning in Rasch models by boosting techniques.
Br J Math Stat Psychol. 2016 Feb;69(1):80-103. doi: 10.1111/bmsp.12060. Epub 2015 Jul 17.
4
Improvement in Detection of Differential Item Functioning Using a Mixture Item Response Theory Model.
Multivariate Behav Res. 2010 Nov 30;45(6):975-99. doi: 10.1080/00273171.2010.533047.
5
Penalization approaches in the conditional maximum likelihood and Rasch modelling context.
Br J Math Stat Psychol. 2023 Feb;76(1):154-191. doi: 10.1111/bmsp.12287. Epub 2022 Sep 14.
6
Item-focussed Trees for the Identification of Items in Differential Item Functioning.
Psychometrika. 2016 Sep;81(3):727-50. doi: 10.1007/s11336-015-9488-3. Epub 2015 Nov 23.
7
DIF Cancellation in the Rasch Model.
J Appl Meas. 2013;14(2):118-28.
8
Analyzing differential item functioning of the Nottingham Health Profile by Mixed Rasch Model.
Turk J Phys Med Rehabil. 2018 Apr 2;64(4):300-307. doi: 10.5606/tftrd.2018.2796. eCollection 2018 Dec.
9
Different Approaches to Covariate Inclusion in the Mixture Rasch Model.
Educ Psychol Meas. 2016 Oct;76(5):848-872. doi: 10.1177/0013164415610380. Epub 2015 Oct 13.
10
Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model.
Psychometrika. 2015 Jun;80(2):289-316. doi: 10.1007/s11336-013-9388-3. Epub 2013 Dec 19.

引用本文的文献

2
A Generalized Multi-Detector Combination Approach for Differential Item Functioning Detection.
Appl Psychol Meas. 2024 Dec 19:01466216241310602. doi: 10.1177/01466216241310602.
3
DIF Statistical Inference Without Knowing Anchoring Items.
Psychometrika. 2023 Dec;88(4):1097-1122. doi: 10.1007/s11336-023-09930-9. Epub 2023 Aug 7.
4
Differential Item Functioning Analysis Without A Priori Information on Anchor Items: QQ Plots and Graphical Test.
Psychometrika. 2021 Jun;86(2):345-377. doi: 10.1007/s11336-021-09746-5. Epub 2021 Mar 3.
5
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study.
Front Psychol. 2019 Nov 13;10:2494. doi: 10.3389/fpsyg.2019.02494. eCollection 2019.
6
A Practical Guide to Variable Selection in Structural Equation Models with Regularized MIMIC Models.
Adv Methods Pract Psychol Sci. 2019 Mar 1;2(1):55-76. doi: 10.1177/2515245919826527. Epub 2019 Mar 25.
7
Looking at DIF From a New Perspective: A Structure-Based Approach Acknowledging Inherent Indefinability.
Appl Psychol Meas. 2019 Jun;43(4):303-321. doi: 10.1177/0146621618795727. Epub 2018 Sep 11.
8
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.

本文引用的文献

1
Improvement in Detection of Differential Item Functioning Using a Mixture Item Response Theory Model.
Multivariate Behav Res. 2010 Nov 30;45(6):975-99. doi: 10.1080/00273171.2010.533047.
2
Rasch Trees: A New Method for Detecting Differential Item Functioning in the Rasch Model.
Psychometrika. 2015 Jun;80(2):289-316. doi: 10.1007/s11336-013-9388-3. Epub 2013 Dec 19.
3
Parameter recovery and model selection in mixed Rasch models.
Br J Math Stat Psychol. 2012 May;65(2):251-62. doi: 10.1111/j.2044-8317.2011.02020.x. Epub 2011 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验