Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
Department of Agronomy, Kansas State University, Manhattan, KS, USA.
Pest Manag Sci. 2018 Dec;74(12):2688-2698. doi: 10.1002/ps.5082. Epub 2018 Sep 4.
Previous research reported the first case of six-way herbicide resistance in a common waterhemp (Amaranthus tuberculatus var. rudis) biotype from Missouri, USA designated MO-Ren. This study investigated the mechanisms of multiple-resistance in the MO-Ren biotype to herbicides from six site-of-action (SOA) groups, i.e. synthetic auxins, 5-enolypyruvyl-shikimate-3-phosphate synthase (EPSPS)-, protoporphyrinogen oxidase (PPO)-, acetolactate synthase (ALS)-, photosystem II (PSII)-, and 4-hydroxyphenyl-pyruvate-dioxygenase (HPPD)-inhibitors.
Genomic DNA sequencing confirmed the presence of known mutations associated with ALS- or PPO-inhibiting herbicide resistance: the Trp-574-Leu amino acid substitution in the ALS enzyme and the codon deletion corresponding to the ΔG210 in the PPX2 enzyme. No target-site point mutations associated with resistance to PSII- and EPSPS-inhibitors were detected. Quantitative polymerase chain reaction (qPCR) indicated that MO-Ren plants contained five-fold more copies of the EPSPS gene than susceptible plants. Malathion in combination with 2,4-D (2,4-dichlorophenoxyacetic acid), mesotrione, and chlorimuron POST enhanced the activity of these herbicides indicating that metabolism due to cytochrome P450 monooxygenase activity was involved in herbicide resistance. 4-Chloro-7-nitrobenzofurazan (NBD-Cl), a glutathione-S-transferase (GST)-inhibitor, in combination with atrazine did not reduce the biomass accumulation. Reduced absorption or translocation of 2,4-D did not contribute to resistance. However, the resistant biotype metabolized 2,4-D, seven- to nine-fold faster than the susceptible.
Target-site point mutations, gene amplification, and elevated rates of metabolism contribute to six-way resistance in the MO-Ren biotype, suggesting both target site and non-target site mechanisms contribute to multiple herbicide resistance in this Amaranthus tuberculatus biotype. © 2018 Society of Chemical Industry.
先前的研究报道了首例来自美国密苏里州的普通豚草(Amaranthus tuberculatus var. rudis)生物型具有六种除草剂抗性,该生物型被命名为 MO-Ren。本研究调查了 MO-Ren 生物型对来自六个作用位点(SOA)组的除草剂的多抗性机制,即合成生长素、5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)、原卟啉原氧化酶(PPO)、乙酰乳酸合酶(ALS)、光系统 II(PSII)和 4-羟基苯基丙酮酸双加氧酶(HPPD)抑制剂。
基因组 DNA 测序证实了与 ALS 或 PPO 抑制剂抗性相关的已知突变的存在:ALS 酶中的 Trp-574-Leu 氨基酸取代和 PPX2 酶中对应于 ΔG210 的密码子缺失。未检测到与 PSII 和 EPSPS 抑制剂抗性相关的靶位点突变。定量聚合酶链反应(qPCR)表明,MO-Ren 植物的 EPSPS 基因拷贝数比敏感植物多五倍。马拉硫磷与 2,4-D(2,4-二氯苯氧基乙酸)、麦草畏和氯嘧磺隆 POST 联合使用增强了这些除草剂的活性,表明细胞色素 P450 单加氧酶活性引起的代谢参与了除草剂抗性。谷胱甘肽-S-转移酶(GST)抑制剂 4-氯-7-硝基苯并呋喃(NBD-Cl)与莠去津联合使用并未降低生物量积累。2,4-D 吸收或转运减少与抗性无关。然而,抗性生物型代谢 2,4-D 的速度比敏感生物型快 7-9 倍。
靶位点突变、基因扩增和代谢率升高导致 MO-Ren 生物型的六种方式抗性,表明靶位和非靶位机制都有助于这种豚草生物型的多种除草剂抗性。 © 2018 化学工业协会。