Suppr超能文献

缺血性脑卒中后质量效应标志物的对比分析。

Comparative Analysis of Markers of Mass Effect after Ischemic Stroke.

机构信息

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA.

Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA.

出版信息

J Neuroimaging. 2018 Sep;28(5):530-534. doi: 10.1111/jon.12525. Epub 2018 May 24.

Abstract

BACKGROUND AND PURPOSE

Midline shift determined on magnetic resonance imaging (MRI) or computed tomography (CT) images is a well-validated marker of mass effect after large hemispheric infarction and associated with mortality. In this study, we targeted a population with moderately sized strokes. We compared midline shift to other imaging markers and determined their ability to predict long-term outcome.

METHODS

MRI scans were studied from the Echoplanar Imaging Thrombolysis Evaluation Trial (EPITHET) cohort. Midline shift, acute stroke lesion volume, lesional swelling volume, change in ipsilateral hemisphere volume, the ratio of ipsilateral to contralateral hemisphere volume, and the reduction in lateral ventricle volume were measured. The relationships of these markers with poor outcome (modified Rankin scale score 3-6 at day 90) were assessed. Receiver-operating characteristic (ROC) curves were generated to compare the performance of each metric.

RESULTS

Of the 71 included patients, 59.2% had a poor outcome that was associated with significantly larger values for midline shift, lesional swelling volume, and ratio of hemisphere volumes. Lesional swelling volume, change in hemisphere volume, ratio of hemisphere volumes, and lateral ventricle displacement were each correlated with midline shift (Spearman r = .60, .49, .61, and -.56, respectively; all P < .0001). ROC curve analysis showed that lesional swelling volume (area under the curve [AUC] = .791) predicted poor outcome better than midline shift (AUC = .682). For predicting mortality, ROC curve analysis showed that these three markers were equivalent.

CONCLUSION

The ratio of ipsilateral to contralateral hemisphere volume, baseline lesion volume and lesional swelling volume best predicted poor outcome across a spectrum of stroke sizes.

摘要

背景与目的

磁共振成像(MRI)或计算机断层扫描(CT)图像上的中线移位是大面积半球梗死和相关死亡率的明确的占位效应标志物。在这项研究中,我们针对中等大小卒中的人群。我们比较了中线移位与其他影像学标志物,并确定了它们预测长期预后的能力。

方法

从 EPIplanar 成像溶栓评估试验(EPITHET)队列中研究 MRI 扫描。测量中线移位、急性卒中病灶体积、病灶肿胀体积、对侧半球体积变化、同侧半球体积与对侧半球体积比以及侧脑室体积减少。评估这些标志物与不良预后(第 90 天改良 Rankin 量表评分 3-6)之间的关系。生成接收者操作特征(ROC)曲线以比较每个指标的性能。

结果

在 71 例纳入的患者中,59.2%的患者预后不良,其中线移位、病灶肿胀体积和半球体积比的数值明显更大。病灶肿胀体积、半球体积变化、半球体积比和侧脑室移位与中线移位均相关(Spearman r =.60、.49、.61 和 -.56;均 P <.0001)。ROC 曲线分析显示,病灶肿胀体积(曲线下面积[AUC] =.791)比中线移位(AUC =.682)更好地预测不良预后。对于预测死亡率,ROC 曲线分析表明,这三个标志物的效果相当。

结论

同侧与对侧半球体积比、基线病变体积和病灶肿胀体积最佳预测了各种卒中大小的不良预后。

相似文献

2
Validating imaging biomarkers of cerebral edema in patients with severe ischemic stroke.验证严重缺血性脑卒中患者脑水肿的影像学标志物。
J Stroke Cerebrovasc Dis. 2013 Aug;22(6):742-9. doi: 10.1016/j.jstrokecerebrovasdis.2012.01.002. Epub 2012 Feb 9.
4
Analysis of brain edema in RHAPSODY.RHAPSODY 中脑水肿的分析。
Int J Stroke. 2024 Jan;19(1):68-75. doi: 10.1177/17474930231187268. Epub 2023 Jul 16.

引用本文的文献

4
Novel advanced imaging techniques for cerebral oedema.用于脑水肿的新型先进成像技术。
Front Neurol. 2024 Jan 31;15:1321424. doi: 10.3389/fneur.2024.1321424. eCollection 2024.
5
Analysis of brain edema in RHAPSODY.RHAPSODY 中脑水肿的分析。
Int J Stroke. 2024 Jan;19(1):68-75. doi: 10.1177/17474930231187268. Epub 2023 Jul 16.

本文引用的文献

3
Reperfusion after ischemic stroke is associated with reduced brain edema.缺血性脑卒中再灌注后与脑水肿减轻有关。
J Cereb Blood Flow Metab. 2018 Oct;38(10):1807-1817. doi: 10.1177/0271678X17720559. Epub 2017 Jul 21.
4
Critical Care Management of Acute Ischemic Stroke.急性缺血性脑卒中的重症监护管理
Curr Treat Options Cardiovasc Med. 2017 Jun;19(6):41. doi: 10.1007/s11936-017-0542-6.
8
Brain edema predicts outcome after nonlacunar ischemic stroke.脑水肿可预测非腔隙性缺血性卒中后的预后。
Stroke. 2014 Dec;45(12):3643-8. doi: 10.1161/STROKEAHA.114.006884. Epub 2014 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验