Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Soft Matter. 2018 Jun 13;14(23):4741-4749. doi: 10.1039/c8sm00513c.
Active colloids show non-equilibrium behavior that departs from classical Brownian motion, thus providing a platform for novel fundamental phenomena and for enticing possible applications ranging from water treatment to medicine and microrobotics. Although the physics, motion mechanisms and guidance have been extensively investigated, active colloids are rarely exploited to simultaneously guide and transport micron-sized objects in a controllable and reversible manner. Here, we use autonomous active Janus particles as colloidal shuttles to controllably transport cargo at the microscale using external electric and magnetic fields. The active motion arises from the metallodielectric characteristics of the Janus particles, which allows them to also trap, transport and release cargo particles through dielectrophoretic interactions induced by an AC electric field. The ferromagnetic nature of the nickel layer that forms the metallic hemisphere of the Janus colloids provides an additional mechanism to direct the motion of the shuttle using an external magnetic field. With this highly programmable colloidal system, we are able to harness active colloid motion and use it to transport cargo particles to specific destinations through a pre-defined route. A simple analytical model is derived to successfully describe the motion of the shuttle-cargo assembly in response to the applied electrical field. The high level of control on cargo pick-up, transport and release leads to a powerful delivery tool, which could eventually be used in microactuators, microfluidics or for controlled delivery within organ-on-a-chip devices.
活性胶体表现出非平衡行为,偏离经典的布朗运动,从而为新的基础现象和诱人的应用提供了平台,这些应用范围从水处理到医学和微型机器人技术。尽管已经广泛研究了物理、运动机制和引导,但活性胶体很少被用于以可控和可逆的方式同时引导和输送微米级物体。在这里,我们使用自主的活性 Janus 粒子作为胶体穿梭器,使用外部电场和磁场在微尺度上可控地运输货物。活性运动源于 Janus 粒子的金属-电介质特性,这使得它们还可以通过交流电场诱导的介电泳相互作用捕获、运输和释放货物颗粒。形成 Janus 胶体金属半球的镍层的铁磁性质提供了一种额外的机制,可通过外部磁场来指导穿梭器的运动。使用这种高度可编程的胶体系统,我们能够利用活性胶体运动并将其用于通过预定义的路线将货物颗粒运输到特定目的地。推导了一个简单的分析模型,成功地描述了响应所施加电场的穿梭器-货物组件的运动。对货物的拾取、运输和释放的高度控制导致了一种强大的输送工具,最终可用于微执行器、微流控或在器官芯片设备内的受控输送。