Complex Materials, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
Nat Commun. 2017 Nov 30;8(1):1872. doi: 10.1038/s41467-017-01956-9.
The active transport of cargo molecules within cells is essential for life. Developing synthetic strategies for cargo control in living or inanimate thermal systems could lead to powerful tools to manipulate chemical gradients at the microscale and thus drive processes out of equilibrium to realize work. Here we demonstrate a colloidal analog of the complex biological shuttles responsible for molecular trafficking in cells. Our colloidal shuttles consist of magneto-dielectric particles that are loaded with cargo particles or living cells through size-selective dielectrophoretic trapping using electrical fields. The loaded colloidal shuttle can be transported with magnetic field gradients before cargo is released at the target location by switching off the electrical field. Such spatiotemporal control over the distribution of chemically active cargo in a reversible fashion can be potentially exploited for fundamental biological research or for the development of novel technologies for advanced cell culturing, drug discovery and medical diagnosis.
细胞内货物分子的主动运输对生命至关重要。开发用于活体或无生命热系统中货物控制的合成策略,可能会为在微观尺度上操纵化学梯度并由此驱动远离平衡的过程以实现功提供强大的工具。在这里,我们展示了负责细胞内分子运输的复杂生物穿梭的胶体类似物。我们的胶体穿梭器由磁电颗粒组成,这些颗粒通过使用电场进行的尺寸选择介电泳捕获来装载货物颗粒或活细胞。在目标位置通过关闭电场释放货物之前,可以使用磁场梯度来运输负载的胶体穿梭器。这种对化学活性货物在空间和时间上的可逆分布的控制,可以潜在地用于基础生物学研究或开发用于高级细胞培养、药物发现和医学诊断的新型技术。