Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA.
Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA.
J Mol Biol. 2018 Aug 17;430(17):2802-2821. doi: 10.1016/j.jmb.2018.05.033. Epub 2018 May 22.
Eukaryotic elongation factor 2 kinase (eEF-2K), the only known calmodulin (CaM)-activated α-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific threonine (Thr-56) diminishing its affinity for the ribosome and reducing the rate of nascent chain elongation during translation. Despite its critical cellular role, the precise mechanisms underlying the CaM-mediated activation of eEF-2K remain poorly defined. Here, employing a minimal eEF-2K construct (TR) that exhibits activity comparable to the wild-type enzyme and is fully activated by CaM in vitro and in cells, and using a variety of complimentary biophysical techniques in combination with computational modeling, we provide a structural mechanism by which CaM activates eEF-2K. Native mass analysis reveals that CaM, with two bound Ca ions, forms a stoichiometric 1:1 complex with TR. Chemical crosslinking mass spectrometry and small-angle X-ray scattering measurements localize CaM near the N-lobe of the TR kinase domain and the spatially proximal C-terminal helical repeat. Hydrogen/deuterium exchange mass spectrometry and methyl NMR indicate that the conformational changes induced on TR by the engagement of CaM are not localized but are transmitted to remote regions that include the catalytic site and the functionally important phosphate binding pocket. The structural insights obtained from the present analyses, together with our previously published kinetics data, suggest that TR, and by inference, wild-type eEF-2K, upon engaging CaM undergoes a conformational transition resulting in a state that is primed to efficiently auto-phosphorylate on the primary activating T348 en route to full activation.
真核延伸因子 2 激酶(eEF-2K)是唯一已知的钙调蛋白(CaM)激活的α-激酶,它在特定的苏氨酸(Thr-56)上磷酸化真核延伸因子 2(eEF-2),降低其与核糖体的亲和力,并降低翻译过程中新生链延伸的速度。尽管它在细胞中具有重要作用,但 CaM 介导的 eEF-2K 激活的确切机制仍未得到很好的定义。在这里,我们采用了一种最小的 eEF-2K 结构域(TR),该结构域表现出与野生型酶相当的活性,并且在体外和细胞中完全被 CaM 激活,并结合使用各种互补的生物物理技术和计算建模,提供了一个 CaM 激活 eEF-2K 的结构机制。天然质量分析表明,CaM 与两个结合的 Ca 离子形成与 TR 的化学计量比为 1:1 的复合物。化学交联质谱和小角 X 射线散射测量将 CaM 定位在 TR 激酶结构域的 N 结构域附近和空间上接近的 C 末端螺旋重复区。氢/氘交换质谱和甲基 NMR 表明,CaM 与 TR 结合诱导的构象变化不是局部的,而是传递到包括催化位点和功能上重要的磷酸结合口袋的远程区域。从本分析中获得的结构见解,以及我们之前发表的动力学数据表明,TR,以及推理上的野生型 eEF-2K,在与 CaM 结合后经历构象转变,导致一种状态,该状态在有效自动磷酸化主要激活 T348 以实现完全激活的过程中处于准备状态。