Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6195-6200. doi: 10.1073/pnas.1720298115. Epub 2018 May 25.
Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.
尽管一氧化氮还原酶 (NOR) 和血红素铜氧化酶 (HCO) 之间具有高度的结构同源性,但控制其反应特异性的因素仍有待了解。通过使用肌红蛋白基 NOR 模型 (FeMb) 并通过调节其血红素氧化还原电位 (E°') 来覆盖天然 NOR 范围,通过调节与近端组氨酸配体的氢键并取代血红素为单甲酰基 (MF-) 或二甲酰基 (DF-) 血红素,我们在此证明 E°' 是 NOR 和 HCO 之间反应性差异的关键。详细的电化学、动力学和振动光谱研究,以及密度泛函理论计算,证明了血红素 E°' 对 NO 还原的强烈影响。将 E°' 从 +148 mV 降低到 -130 mV 会显著影响 NOR 模拟物的电子性质,从而使 NO 结合和血红素亚硝酰基衰减速率分别提高 180 倍和 633 倍。我们的结果表明,NOR 具有精细调节的 E°',最大限度地提高了它们的酶效率,并有助于在相反因素之间取得平衡:低 E°' 促进快速的 NO 结合和二硝酰物种的衰减,高 E°' 促进快速的电子转移。只有当 FeMb(MF-血红素)中的 E°' 被最佳调节以用于 NO 结合、血红素亚硝酰基衰减和电子转移时,该蛋白质才能实现多次 (>35 次) 周转,这是以前的合成或酶基 NOR 模型无法实现的。这也解释了生物能学中 HCO 中选择性交叉反应性的一个长期存在的问题。只有血红素 E°' 在与 NOR 相似的范围内 (在 -59 和 200 mV 之间) 的 HCO 才表现出 NOR 反应性。因此,我们的工作证明了在各种金属蛋白中有效调节 E°' 以实现其最佳功能。