Suppr超能文献

血红素氧化还原电势是一氧化氮还原酶和血红素铜氧化酶之间反应性差异的关键。

Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase.

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6195-6200. doi: 10.1073/pnas.1720298115. Epub 2018 May 25.

Abstract

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.

摘要

尽管一氧化氮还原酶 (NOR) 和血红素铜氧化酶 (HCO) 之间具有高度的结构同源性,但控制其反应特异性的因素仍有待了解。通过使用肌红蛋白基 NOR 模型 (FeMb) 并通过调节其血红素氧化还原电位 (E°') 来覆盖天然 NOR 范围,通过调节与近端组氨酸配体的氢键并取代血红素为单甲酰基 (MF-) 或二甲酰基 (DF-) 血红素,我们在此证明 E°' 是 NOR 和 HCO 之间反应性差异的关键。详细的电化学、动力学和振动光谱研究,以及密度泛函理论计算,证明了血红素 E°' 对 NO 还原的强烈影响。将 E°' 从 +148 mV 降低到 -130 mV 会显著影响 NOR 模拟物的电子性质,从而使 NO 结合和血红素亚硝酰基衰减速率分别提高 180 倍和 633 倍。我们的结果表明,NOR 具有精细调节的 E°',最大限度地提高了它们的酶效率,并有助于在相反因素之间取得平衡:低 E°' 促进快速的 NO 结合和二硝酰物种的衰减,高 E°' 促进快速的电子转移。只有当 FeMb(MF-血红素)中的 E°' 被最佳调节以用于 NO 结合、血红素亚硝酰基衰减和电子转移时,该蛋白质才能实现多次 (>35 次) 周转,这是以前的合成或酶基 NOR 模型无法实现的。这也解释了生物能学中 HCO 中选择性交叉反应性的一个长期存在的问题。只有血红素 E°' 在与 NOR 相似的范围内 (在 -59 和 200 mV 之间) 的 HCO 才表现出 NOR 反应性。因此,我们的工作证明了在各种金属蛋白中有效调节 E°' 以实现其最佳功能。

相似文献

引用本文的文献

7
Metalloprotein enabled redox signal transduction in microbes.金属蛋白酶介导的微生物中氧化还原信号转导。
Curr Opin Chem Biol. 2023 Oct;76:102331. doi: 10.1016/j.cbpa.2023.102331. Epub 2023 Jun 11.
10
Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies.可定制的四螺旋束作为氧化还原研究的工具包。
J Phys Chem B. 2022 Oct 20;126(41):8177-8187. doi: 10.1021/acs.jpcb.2c05119. Epub 2022 Oct 11.

本文引用的文献

4
The unusual redox properties of C-type oxidases.C型氧化酶不同寻常的氧化还原特性。
Biochim Biophys Acta. 2016 Dec;1857(12):1892-1899. doi: 10.1016/j.bbabio.2016.09.009. Epub 2016 Sep 21.
5
Short Self-Assembling Peptides Are Able to Bind to Copper and Activate Oxygen.短自组装肽能够与铜结合并激活氧。
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):9017-20. doi: 10.1002/anie.201602480. Epub 2016 Jun 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验