Suppr超能文献

生物能量学中参与电子传递的金属蛋白的氧化还原电位的设计与微调。

Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.

作者信息

Hosseinzadeh Parisa, Lu Yi

机构信息

Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.

Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.

出版信息

Biochim Biophys Acta. 2016 May;1857(5):557-581. doi: 10.1016/j.bbabio.2015.08.006. Epub 2015 Aug 21.

Abstract

Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

摘要

氧化还原电位是控制电子转移(ET)速率并因此调节生物能量学中ET过程的主要因素。为了使ET过程的效率最大化,人们需要掌握调节氧化还原电位的技巧,特别是在金属蛋白中,因为它们代表了主要的ET蛋白类别。在这篇综述中,我们首先描述了调节ET中心氧化还原电位的重要性及其在调节包括光合作用和呼吸作用在内的生物能量过程中的ET作用。本综述的主要重点是总结设计ET中心(即铜蓝蛋白、细胞色素和铁硫蛋白)的最新工作,以及涉及这些ET中心的蛋白质网络设计实例。然后,我们讨论影响这些ET中心氧化还原电位的因素,包括金属离子、金属中心的配体以及主要配体之外的相互作用,特别是非共价二级配位球相互作用。我们提供了使用天然和非天然氨基酸以及天然和非天然辅因子微调氧化还原电位的策略示例。通过几个案例研究来说明该领域最近取得的成功。还展望了未来的努力方向。本文是由罗纳德·L·科德和J.L.罗斯·安德森编辑的名为《生物能量学的生物设计——电子转移辅因子、蛋白质和蛋白质网络的设计与工程》特刊的一部分。

相似文献

1
Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.
Biochim Biophys Acta. 2016 May;1857(5):557-581. doi: 10.1016/j.bbabio.2015.08.006. Epub 2015 Aug 21.
2
Design of dinuclear manganese cofactors for bacterial reaction centers.
Biochim Biophys Acta. 2016 May;1857(5):539-547. doi: 10.1016/j.bbabio.2015.09.003. Epub 2015 Sep 25.
3
Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.
Biochim Biophys Acta. 2016 May;1857(5):589-597. doi: 10.1016/j.bbabio.2015.09.004. Epub 2015 Sep 25.
4
Structural principles for computational and de novo design of 4Fe-4S metalloproteins.
Biochim Biophys Acta. 2016 May;1857(5):531-538. doi: 10.1016/j.bbabio.2015.10.001. Epub 2015 Oct 9.
5
First principles design of a core bioenergetic transmembrane electron-transfer protein.
Biochim Biophys Acta. 2016 May;1857(5):503-512. doi: 10.1016/j.bbabio.2015.12.002. Epub 2015 Dec 7.
6
Design and engineering of a man-made diffusive electron-transport protein.
Biochim Biophys Acta. 2016 May;1857(5):513-521. doi: 10.1016/j.bbabio.2015.09.008. Epub 2015 Sep 28.
7
Expansion of Redox Chemistry in Designer Metalloenzymes.
Acc Chem Res. 2019 Mar 19;52(3):557-565. doi: 10.1021/acs.accounts.8b00627. Epub 2019 Feb 28.
8
Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.
Biochim Biophys Acta. 2016 May;1857(5):548-556. doi: 10.1016/j.bbabio.2015.08.009. Epub 2015 Sep 1.
9
Biodesign for bioenergetics--the design and engineering of electron transfer cofactors, proteins and protein networks.
Biochim Biophys Acta. 2016 May;1857(5):483-484. doi: 10.1016/j.bbabio.2016.02.017. Epub 2016 Mar 2.
10
Electron transfer activity of a de novo designed copper center in a three-helix bundle fold.
Biochim Biophys Acta. 2016 May;1857(5):522-530. doi: 10.1016/j.bbabio.2015.09.007. Epub 2015 Sep 28.

引用本文的文献

1
Two Key Ferredoxins for Nitrogen Fixation Have Different Specificities and Biophysical Properties.
Chemistry. 2025 Jul 2;31(37):e202500844. doi: 10.1002/chem.202500844. Epub 2025 May 30.
2
Electrocatalytic Nitrite Reduction by a Monomeric NrfA: Commonality in Ammonification Mechanisms.
Biochemistry. 2025 Mar 18;64(6):1359-1369. doi: 10.1021/acs.biochem.4c00761. Epub 2025 Mar 3.
4
Deciphering reductive dehalogenase specificity through targeted mutagenesis of chloroalkane reductases.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0150124. doi: 10.1128/aem.01501-24. Epub 2025 Feb 13.
5
Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism.
J Biol Chem. 2025 Feb;301(2):108082. doi: 10.1016/j.jbc.2024.108082. Epub 2024 Dec 13.
6
Electron transfer in biological systems.
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.
9
The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactions.
J Biol Inorg Chem. 2024 Jun;29(4):395-405. doi: 10.1007/s00775-024-02057-x. Epub 2024 May 23.
10
Photocatalytic Removal of the Greenhouse Gas Nitrous Oxide by Liposomal Microreactors.
Angew Chem Weinheim Bergstr Ger. 2022 Oct 10;134(41):e202210572. doi: 10.1002/ange.202210572. Epub 2022 Sep 5.

本文引用的文献

1
Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid.
Chem Sci. 2015 Jul 1;6(7):3881-3885. doi: 10.1039/C5SC01126D. Epub 2015 Apr 13.
2
Long-Range Electron Transfer in Engineered Azurins Exhibits Marcus Inverted Region Behavior.
J Phys Chem Lett. 2015 Jan 2;6(1):100-5. doi: 10.1021/jz5022685. Epub 2014 Dec 17.
3
4
Reaction mechanism of cytochrome c oxidase.
Chem Rev. 2015 Feb 25;115(4):1936-89. doi: 10.1021/cr500266a. Epub 2015 Jan 20.
5
Artificial photosynthesis: molecular systems for catalytic water oxidation.
Chem Rev. 2014 Dec 24;114(24):11863-2001. doi: 10.1021/cr400572f. Epub 2014 Oct 29.
6
Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin.
J Am Chem Soc. 2014 Aug 27;136(34):11882-5. doi: 10.1021/ja5054863. Epub 2014 Aug 18.
7
Gradated assembly of multiple proteins into supramolecular nanomaterials.
Nat Mater. 2014 Aug;13(8):829-36. doi: 10.1038/nmat3998. Epub 2014 Jun 15.
8
Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers.
Chem Rev. 2014 Apr 23;114(8):4366-469. doi: 10.1021/cr400479b.
9
DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity.
J Am Chem Soc. 2014 Apr 30;136(17):6470-8. doi: 10.1021/ja501973c. Epub 2014 Apr 16.
10
Nanobiomolecular multiprotein clusters on electrodes for the formation of a switchable cascadic reaction scheme.
Angew Chem Int Ed Engl. 2014 May 26;53(22):5676-9. doi: 10.1002/anie.201310437. Epub 2014 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验