Waseda University, Graduate School of Advanced Science and Engineering, Tokyo, Japan.
National Institute of Radiological Sciences, QST, Department of Accelerator and Medical Physics, Chiba, Japan.
Sci Rep. 2018 May 25;8(1):8116. doi: 10.1038/s41598-018-26591-2.
Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either C* or B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of C(p,p)C*.
在医学和物理应用中,1-10 MeV 范围内的核伽马射线成像远未得到广泛应用。在质子治疗中,4.4 MeV 的伽马射线是由 C或 B激发核发射的,被认为是剂量输送和/或射程验证的良好指标。此外,在伽马射线天文学中,4.4 MeV 的伽马射线是由宇宙射线在星际介质中的相互作用产生的,因此可以用来探测宇宙中的核合成。在本文中,我们展示了一种由新开发的 3D 位置灵敏康普顿相机(3D-PSCC)拍摄的高精度 4.4 MeV 伽马射线图像。为了模拟质子治疗中的情况,我们首先用 70 MeV 的质子束辐照水、PMMA 和 Ca(OH)2,然后用 HPGe 探测器识别各种核线。4.4 MeV 的伽马射线构成了一个宽峰,包括单逃逸峰和双逃逸峰。因此,通过在 3D-PSCC 中设置能量窗口为 3 到 5 MeV,我们表明伽马射线图像在布拉格峰附近急剧集中,这与 C(p,p)C*截面中的最小能量阈值和尖锐峰轮廓一致。