Department of Biochemistry, Konkuk University School of Medicine, Seoul, 143-701, Republic of Korea.
J Cancer Res Clin Oncol. 2018 Aug;144(8):1435-1444. doi: 10.1007/s00432-018-2676-7. Epub 2018 May 25.
Acquired resistance (AR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a major issue worldwide, for both patients and healthcare providers. However, precise prediction is currently infeasible due to the lack of an appropriate model. This study was conducted to develop and validate an individualized prediction model for automated detection of acquired EGFR-TKI resistance.
Penalized regression was applied to construct a predictive model using publically available genomic cohorts of acquired EGFR-TKI resistance. To develop a model with enhanced generalizability, we merged multiple cohorts then updated the learning parameter via robust cross-study validation. Model performance was evaluated mainly using the area under the receiver operating characteristic curve.
Using a multi-study-derived machine learning method, we developed an extremely parsimonious model with generalized predictors (DDK3, CPS1, MOB3B, KRT6A), which has excellent prediction performance on blind cohorts for AR to EGFR-TKIs (gefitinib, erlotinib and afatinib) and monoclonal antibody against EGFR (cetuximab). In addition, our model also showed high performance for predicting intrinsic resistance (IR) to EGFR-TKIs from two large-scale pharmacogenomic resources, the Cancer Genome Project and the Cancer Cell Line Encyclopedia, suggesting that these general predictive features may work across AR and IR.
We successfully constructed a multi-study-derived prediction model for acquired EGFR-TKI resistance with excellent accuracy, generalizability and transferability.
表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)获得性耐药(AR)是一个全球性的重大问题,无论是对患者还是医疗保健提供者来说都是如此。然而,由于缺乏合适的模型,目前无法进行精确预测。本研究旨在开发和验证一种用于自动检测获得性 EGFR-TKI 耐药的个体化预测模型。
使用公开的获得性 EGFR-TKI 耐药基因组队列,应用惩罚回归构建预测模型。为了开发具有增强通用性的模型,我们合并了多个队列,然后通过稳健的跨研究验证更新学习参数。主要使用接受者操作特征曲线下的面积来评估模型性能。
使用多研究衍生的机器学习方法,我们开发了一种具有广义预测因子(DDK3、CPS1、MOB3B、KRT6A)的极其简约的模型,该模型在针对 EGFR-TKIs(吉非替尼、厄洛替尼和阿法替尼)和针对 EGFR 的单克隆抗体(西妥昔单抗)的 AR 盲队列中具有出色的预测性能。此外,我们的模型在两个大规模药物基因组学资源(癌症基因组图谱和癌症细胞系百科全书)中对 EGFR-TKI 的固有耐药(IR)的预测性能也很高,这表明这些通用预测特征可能在 AR 和 IR 中都有效。
我们成功构建了一种具有出色准确性、通用性和可转移性的多研究衍生的获得性 EGFR-TKI 耐药预测模型。