Suppr超能文献

表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)耐药机制的综合分析及预后模型的建立与验证

Comprehensive analysis of resistance mechanisms to EGFR-TKIs and establishment and validation of prognostic model.

作者信息

Yang Zhengzheng, Li Haiming, Dong Tongjing, Li Guangda, Chen Dong, Li Shujiao, Wang Yue, Pan Yuancan, Lu Taicheng, Yang Guowang, Zhang Ganlin, Cheng Peiyu, Wang Xiaomin

机构信息

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.

Graduate School, Beijing University of Chinese Medicine, Beijing, China.

出版信息

J Cancer Res Clin Oncol. 2023 Nov;149(15):13773-13792. doi: 10.1007/s00432-023-05129-8. Epub 2023 Aug 2.

Abstract

PURPOSE

Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are the first-line therapy for patients with lung adenocarcinoma (LUAD) harboring activating EGFR mutations. However, the emergence of drug resistance to EGFR-TKIs remains a critical obstacle for successful treatment and is associated with poor patient outcomes. The overarching objective of this study is to apply bioinformatics tools to gain insights into the mechanisms underlying resistance to EGFR-TKIs and develop a robust predictive model.

METHODS

The genes associated with gefitinib resistance in the LUAD cell Gene Expression Omnibus (GEO) database were identified using gene chip expression data. Functional enrichment analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis were performed to comprehensively explore the mechanism of gefitinib resistance. Furthermore, a GRRG_score was constructed by integrating genes related to LUAD prognosis from The Cancer Genome Atlas (TCGA) database with the screened Gefitinib Resistant Related differentially expressed genes (GRRDEGs) using the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression analyses. Furthermore, we conducted an in-depth analysis of the tumor microenvironment (TME) features and their association with immune infiltration between different GRRG_score groups. A prognostic model for LUAD was developed based on the GRRG_score and validated. The HPA database was used to validate protein expression. The CTR-DB database was utilized to validate the results of drug therapy prediction based on the relevant genes.

RESULTS

A total of 110 differentially expression genes were identified. Pathway enrichment analysis of DEGs showed that the differentially expressed genes were mainly enriched in Mucin type O-glycan biosynthesis, Cytokine-cytokine receptor interaction, Sphingolipid metabolism. Gene set enrichment analysis showed that biological processes strongly correlated with gefitinib resistance were cell proliferation and immune-related pathways, EPITHELIAL_MESENCHYMAL_TRANSITION, APICAL_SURFACE, and APICAL_JUNCTION were highly expressed in the drug-resistant group; KRAS_SIGNALING_DN, HYPOXIA, and HEDGEHOG_SIGNALING were highly expressed in the drug-resistant group. The GRRG_score was constructed based on the expression levels of 13 genes, including HSPA2, ATP8B3, SPOCK1, EIF6, NUP62CL, BCAR3, PCSK9, NT5E, FLNC, KRT8, FSCN1, ANGPTL4, and ID1. We further screened and validated two key genes, namely, NUP62CL and KRT8, which exhibited predictive value for both prognosis and drug resistance.

CONCLUSIONS

Our study identified several novel GRRDEGs and provided insight into the underlying mechanisms of gefitinib resistance in LUAD. Our results have implications for developing more effective treatment strategies and prognostic models for LUAD patients.

摘要

目的

表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)是携带激活型EGFR突变的肺腺癌(LUAD)患者的一线治疗药物。然而,对EGFR-TKIs产生耐药性仍是成功治疗的关键障碍,并与患者的不良预后相关。本研究的总体目标是应用生物信息学工具深入了解EGFR-TKIs耐药的机制,并建立一个强大的预测模型。

方法

利用基因芯片表达数据,在LUAD细胞基因表达综合数据库(GEO)中鉴定与吉非替尼耐药相关的基因。进行功能富集分析、基因集富集分析(GSEA)和免疫浸润分析,以全面探索吉非替尼耐药的机制。此外,通过使用最小绝对收缩和选择算子(LASSO)和Cox回归分析,将来自癌症基因组图谱(TCGA)数据库的与LUAD预后相关的基因与筛选出的吉非替尼耐药相关差异表达基因(GRRDEGs)整合,构建GRRG_score。此外,我们对不同GRRG_score组之间的肿瘤微环境(TME)特征及其与免疫浸润的关系进行了深入分析。基于GRRG_score建立并验证了LUAD的预后模型。使用人类蛋白质图谱(HPA)数据库验证蛋白质表达。利用CTR-DB数据库验证基于相关基因的药物治疗预测结果。

结果

共鉴定出110个差异表达基因。对差异表达基因的通路富集分析表明,差异表达基因主要富集在粘蛋白型O-聚糖生物合成、细胞因子-细胞因子受体相互作用、鞘脂代谢中。基因集富集分析表明,与吉非替尼耐药密切相关的生物学过程是细胞增殖和免疫相关通路,上皮-间质转化、顶端表面和顶端连接在耐药组中高表达;KRAS信号通路抑制、缺氧和刺猬信号通路在耐药组中高表达。基于13个基因的表达水平构建了GRRG_score,包括热休克蛋白家族A成员2(HSPA2)、ATP酶8B3(ATP8B3)、富含半胱氨酸的酸性分泌蛋白1(SPOCK1)、真核翻译起始因子6(EIF6)、核孔蛋白62样蛋白(NUP62CL)、乳腺癌抗雌激素耐药蛋白3(BCAR3)、前蛋白转化酶枯草溶菌素/kexin 9型(PCSK9)、5'-核苷酸酶外切酶(NT5E)、细丝蛋白C(FLNC)、角蛋白8(KRT8)、丝状肌动蛋白结合蛋白1(FSCN1)、血管生成素样蛋白4(ANGPTL4)和ID1。我们进一步筛选并验证了两个关键基因,即NUP62CL和KRT8,它们对预后和耐药性均具有预测价值。

结论

我们的研究鉴定了几个新的GRRDEGs,并深入了解了LUAD中吉非替尼耐药的潜在机制。我们的结果对开发更有效的LUAD患者治疗策略和预后模型具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验