Bagchee-Clark Ashis J, Mucaki Eliseos J, Whitehead Tyson, Rogan Peter K
Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada.
SHARCNET University of Western Ontario London Ontario N6A 5B7 Canada.
MedComm (2020). 2020 Dec 10;1(3):311-327. doi: 10.1002/mco2.46. eCollection 2020 Dec.
Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi-gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology-based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway-extended SVMs predicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best performing pathway-extended models demonstrated improved balance predicting both sensitive and resistant patient categories, with many of these genes having a known role in cancer aetiology. Ensemble machine learning-based averaging of multiple pathway-extended models derived for an individual drug increased accuracy to >70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incorporation of novel cancer biomarkers, machine learning-based pathway-extended signatures display strong efficacy predicting both sensitive and resistant patient responses to chemotherapy.
癌症化疗反应与多种药物遗传生物标志物有关,通常针对同一种药物。本研究利用机器学习得出多基因表达特征,以预测个体患者对特定酪氨酸激酶抑制剂的反应,这些抑制剂包括厄洛替尼、吉非替尼、索拉非尼、舒尼替尼、拉帕替尼和伊马替尼。支持向量机(SVM)学习被用于训练数学模型,该模型采用一种基于系统生物学的新方法来区分对这些药物的敏感性和耐药性。这始于先前与特定药物反应相关的基因的表达,然后扩展到评估其产物通过生化途径和相互作用相关的基因。最佳的途径扩展支持向量机预测患者反应的准确率分别为:伊马替尼70%、拉帕替尼71%、舒尼替尼83%、厄洛替尼83%、索拉非尼88%和吉非替尼91%。这些表现最佳的途径扩展模型在预测敏感和耐药患者类别方面表现出更好的平衡,其中许多基因在癌症病因学中具有已知作用。基于集成机器学习对针对单个药物得出的多个途径扩展模型进行平均,可将厄洛替尼、吉非替尼、拉帕替尼和索拉非尼的准确率提高到>70%。通过纳入新的癌症生物标志物,基于机器学习的途径扩展特征在预测患者对化疗的敏感和耐药反应方面显示出强大的功效。