Suppr超能文献

肝脏和心脏线粒体中的 HO 代谢:低发射-高清除和高发射-低清除系统。

HO metabolism in liver and heart mitochondria: Low emitting-high scavenging and high emitting-low scavenging systems.

机构信息

Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.

Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3.

出版信息

Free Radic Biol Med. 2018 Aug 20;124:135-148. doi: 10.1016/j.freeradbiomed.2018.05.064. Epub 2018 May 24.

Abstract

Although mitochondria are presumed to emit and consume reactive oxygen species (ROS), the quantitative interplay between the two processes in ROS regulation is not well understood. Here, we probed the role of mitochondrial bioenergetics in HO metabolism using rainbow trout liver and heart mitochondria. Both liver and heart mitochondria emitted HO at rates that depended on their metabolic state, with the emission rates (free radical leak) constituting 0.8-2.9% and 0.2-2.5% of the respiration rate in liver and heart mitochondria, respectively. When presented with exogenous HO, liver and heart mitochondria consumed it by first order reactions with half-lives (s) of 117 and 210, and rate constants of 5.96 and 3.37 (× 10 s), respectively. The mitochondrial bioenergetic status greatly affected the rate of HO consumption in heart but not liver mitochondria. Moreover, the activities and contribution of HO scavenging systems varied between liver and heart mitochondria. The significance of the scavenging systems ranked by the magnitude (%) of inhibition of HO removal after correcting for emission were, liver (un-energized and energized): catalase > glutathione (GSH) ≥ thioredoxin reductase (TrxR); un-energized heart mitochondria: catalase > TrxR > GSH and energized heart mitochondria: GSH > TrxR > catalase. Notably, depletion of GSH evoked a massive surge in HO emission that grossly masked the contribution of this pathway to HO scavenging in heart mitochondria. Irrespective of the organ of their origin, mitochondria behaved as HO regulators that emitted or consumed it depending on the ambient HO concentration, mitochondrial bioenergetic state and activity of the scavenging enzyme systems. Indeed, manipulation of mitochondrial bioenergetics and HO scavenging systems caused mitochondria to switch from being net consumers to net emitters of HO. Overall, our data suggest that the low levels of HO typically present in cells would favor emission of this metabolite but the scavenging systems would prevent its accumulation.

摘要

尽管人们认为线粒体可以释放和消耗活性氧(ROS),但在 ROS 调节中这两个过程的定量相互作用尚不清楚。在这里,我们使用彩虹鳟鱼的肝脏和心脏线粒体来研究线粒体生物能学在 HO 代谢中的作用。肝脏和心脏线粒体都以依赖其代谢状态的速率产生 HO,其排放速率(自由基泄漏)分别构成肝脏和心脏线粒体呼吸速率的 0.8-2.9%和 0.2-2.5%。当暴露于外源性 HO 时,肝脏和心脏线粒体通过半衰期(s)分别为 117 和 210,以及速率常数为 5.96 和 3.37(×10 s)的一级反应消耗它。线粒体生物能状态极大地影响了心脏而不是肝脏线粒体中 HO 消耗的速率。此外,HO 清除系统的活性和贡献在肝脏和心脏线粒体之间有所不同。通过校正排放后,HO 去除抑制的程度(%)来对 HO 清除系统的重要性进行排序,结果为:肝脏(未供能和供能):过氧化氢酶 > 谷胱甘肽(GSH)≥ 硫氧还蛋白还原酶(TrxR);未供能的心脏线粒体:过氧化氢酶 > TrxR > GSH;供能的心脏线粒体:GSH > TrxR > 过氧化氢酶。值得注意的是,GSH 的耗竭会引发 HO 排放的巨大激增,这极大地掩盖了该途径对心脏线粒体中 HO 清除的贡献。无论其起源器官如何,线粒体的行为都是 HO 调节剂,可根据周围 HO 浓度、线粒体生物能状态和清除酶系统的活性来释放或消耗 HO。事实上,对线粒体生物能学和 HO 清除系统的操纵会导致线粒体从 HO 的净消耗者转变为 HO 的净排放者。总的来说,我们的数据表明,细胞中通常存在的低水平的 HO 会有利于这种代谢物的释放,但清除系统会防止其积累。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验