Suppr超能文献

直接和间接预测肠道甲烷日产量、产率和每单位牛奶和奶酪的强度,来自脂肪酸和牛奶傅里叶变换红外光谱。

Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra.

机构信息

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Padua), viale dell'Università 16-35020 Legnaro (PD), Italy.

Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova (Padua), viale dell'Università 16-35020 Legnaro (PD), Italy.

出版信息

J Dairy Sci. 2018 Aug;101(8):7219-7235. doi: 10.3168/jds.2017-14289. Epub 2018 May 24.

Abstract

Mitigating the dairy chain's contribution to climate change requires cheap, rapid methods of predicting enteric CH emissions (EME) of dairy cows in the field. Such methods may also be useful for genetically improving cows to reduce EME. Our objective was to evaluate different procedures for predicting EME traits from infrared spectra of milk samples taken at routine milk recording of cows. As a reference method, we used EME traits estimated from published equations developed from a meta-analysis of data from respiration chambers through analysis of various fatty acids in milk fat by gas chromatography (FA). We analyzed individual milk samples of 1,150 Brown Swiss cows from 85 farms operating different dairy systems (from very traditional to modern), and obtained the cheese yields of individual model cheeses from these samples. We also obtained Fourier-transform infrared absorbance spectra on 1,060 wavelengths (5,000 to 930 waves/cm) from the same samples. Five reference enteric CH traits were calculated: CH yield (CH/DMI, g/kg) per unit of dry matter intake (DMI), and CH intensity (CH/CM, g/kg) per unit of corrected milk (CM) from the FA profiles; CH intensity per unit of fresh cheese (CH/CY, g/kg) and cheese solids (CH/CY, g/kg) from individual cheese yields (CY); and daily CH production (dCH, g/d). Direct infrared (IR) calibrations were obtained by BayesB modeling; the determination coefficients of cross-validation varied from 0.36 for dCH to 0.57 for CH/CM, and were similar to the coefficient of determination values of the equations based on FA used as the reference method (0.47 for CH/DMI and 0.54 for CH/CM). The models allowed us to select the most informative wavelengths for each EME trait and to infer the milk chemical features underlying the predictions. Aside from the 5 direct infrared prediction calibrations, we tested another 8 indirect prediction models. Using IR-predicted informative fatty acids (FA) instead of FA, we were able to obtain indirect predictions with about the same precision (correlation with reference values) as direct IR predictions of CH/DMI (0.78 vs. 0.76, respectively) and CH/CM (0.82 vs. 0.83). The indirect EME predictions based on IR-predicted CY were less precise than the direct IR predictions of both CH/CY (0.67 vs. 0.81) and CH/CY (0.62 vs. 0.78). Four indirect dCH predictions were obtained by multiplying the measured or IR-predicted daily CM production by the direct or indirect CH/CM. Combining recorded daily CM and predicted CH/CM greatly increased precision over direct dCH predictions (0.96-0.96 vs. 0.68). The estimates obtained from the majority of direct and indirect IR-based prediction models exhibited herd and individual cow variability and effects of the main sources of variation (dairy system, parity, days in milk) similar to the reference data. Some rapid, cheap, direct and indirect IR prediction models appear to be useful for monitoring EME in the field and possibly for genetic/genomic selection, but future studies directly measuring CH with different breeds and dairy systems are needed to validate our findings.

摘要

减轻乳制品供应链对气候变化的影响需要廉价、快速的方法来预测奶牛在田间的肠道 CH 排放量 (EME)。这种方法也可能有助于通过基因改良奶牛来减少 EME。我们的目标是评估从奶牛常规牛奶记录中采集的牛奶样本的红外光谱预测 EME 特征的不同方法。作为参考方法,我们使用从通过对牛奶脂肪中的各种脂肪酸进行气相色谱 (FA) 分析的元分析中得出的方程估计的 EME 特征。我们分析了来自 85 个农场的 1,150 头瑞士褐牛的个体牛奶样本,这些农场采用不同的乳制品系统(从非常传统到现代)运营,并从这些样本中获得了各个模型奶酪的奶酪产量。我们还从同一样本中获得了 1,060 个波长(5,000 到 930 波/cm)的傅里叶变换红外吸收光谱。从 FA 图谱中计算了五个参考肠道 CH 特征:每单位干物质摄入量 (DMI) 的 CH 产量 (CH/DMI,g/kg) 和每单位校正乳 (CM) 的 CH 强度 (CH/CM,g/kg);每单位新鲜奶酪 (CH/CY,g/kg) 和奶酪固体 (CH/CY,g/kg) 的 CH 强度来自个体奶酪产量 (CY);以及每日 CH 产量 (dCH,g/d)。通过贝叶斯 B 建模获得直接红外 (IR) 校准;交叉验证的确定系数从 dCH 的 0.36 到 CH/CM 的 0.57 不等,与作为参考方法的基于 FA 的方程的确定系数值相似(CH/DMI 为 0.47,CH/CM 为 0.54)。这些模型允许我们为每个 EME 特征选择最具信息量的波长,并推断出预测背后的牛奶化学特征。除了 5 个直接红外预测校准外,我们还测试了另外 8 个间接预测模型。使用 IR 预测的有信息的脂肪酸 (FA) 代替 FA,我们能够获得与直接 IR 预测的 CH/DMI(分别为 0.78 与 0.76)和 CH/CM(分别为 0.82 与 0.83)相同精度的间接预测。基于 IR 预测的 CY 的间接 EME 预测不如直接 IR 预测的 CH/CY(0.67 与 0.81)和 CH/CY(0.62 与 0.78)精确。通过将测量或 IR 预测的每日 CM 产量乘以直接或间接的 CH/CM,获得了四个间接的 dCH 预测。将记录的每日 CM 和预测的 CH/CM 结合起来,大大提高了直接 dCH 预测的精度(0.96-0.96 与 0.68)。从大多数直接和间接基于 IR 的预测模型中获得的估计值表现出群体和个体牛的变异性以及主要变异源(乳制品系统、胎次、泌乳天数)的影响,与参考数据相似。一些快速、廉价的直接和间接 IR 预测模型似乎可用于在田间监测 EME,并且可能用于遗传/基因组选择,但需要进行直接测量不同品种和乳制品系统的 CH 的后续研究来验证我们的发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验